scholarly journals Study of the Catalytic Activity and Surface Properties of Manganese-Zinc Ferrite Prepared from Used Batteries

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Katarzyna Winiarska ◽  
Roman Klimkiewicz ◽  
Włodzimierz Tylus ◽  
Agnieszka Sobianowska-Turek ◽  
Juliusz Winiarski ◽  
...  

The catalytic activity of the Mn-Zn ferrites obtained by chemical methods from a solution after acid leaching of waste Zn-C and Zn-Mn batteries was studied. Precursors of metal ions (Fe, Mn, and Zn) were obtained using different precipitating agents ((NH4)2C2O4, Na2CO3, and NaOH), and then, the combustion route was used to prepare catalytically active nanocrystalline ferrites. The obtained ferrite catalysts differ in terms of microstructure, the number of acid and base sites, and the surface composition depending on the ion precursor used in the combustion process. All prepared materials were catalytically active in the butan-1-ol conversion test. Depending on the ion precursor applied in the combustion process, a selective catalyst towards aldehyde (carbonate precursor) or ketone (hydroxide precursor) formation can be obtained. Furthermore, the catalyst prepared from the hydroxide precursor exhibits the highest catalytic activity in the n-butanol test (nearly 100% conversion under the experiment conditions).

2005 ◽  
Vol 19 (15n17) ◽  
pp. 2333-2338 ◽  
Author(s):  
V. P. PETRANOVSKII ◽  
A. N. PESTRYAKOV ◽  
L. K. KAZANTSEVA ◽  
F. F. CASTILLON BARRAZA ◽  
M. H. FARÍAS

Copper catalysts for complete oxidation of hydrocarbons supported on natural zeolites of different structure and origin were prepared by ion-exchange procedure. The catalytic experiments demonstrate that the temperature of beginning of hydrocarbons conversion is in the range of 170-300 °C, depending on the composition of the catalyst. The complete conversion can be observed for both zeolites, depending (probably) on Si/Al ratio of the zeolite matrix. Different states of the copper have been identified by the methods of UV-VIS and XPS spectroscopies and TPR by hydrogen. Whereas no changes in XRD and 27 Al MAS NMR was observed under condition of catalytic runs, that supports conclusion about stability of bulk material, XPS spectroscopy reveals significant altering in surface composition under different treatments due to appearance of complicated nano-species of copper, which are responsible for catalytic activity.


1988 ◽  
Vol 53 (8) ◽  
pp. 1636-1646 ◽  
Author(s):  
Viliam Múčka ◽  
Kamil Lang

Some physical and catalytic properties of the two-component copper(II)oxide-chromium(III)oxide catalyst with different content of both components were studied using the decomposition of the aqueous solution of hydrogen peroxide as a testing reaction. It has been found that along to both basic components, the system under study contains also the spinel structure CuCr2O4, chromate washable by water and hexavalent ions of chromium unwashable by water. The soluble chromate is catalytically active. During the first period of the reaction the equilibrium is being established in both homogeneous and heterogeneous catalytic systems. The catalytic activity as well as the specific surface area of the washed solid is a non-monotonous function of its composition. It seems highly probable that the extreme values of both these quantities are not connected with the detected admixtures in the catalytic system. The system under study is very insensitive with regard to the applied doses of gamma radiation. Its catalytic properties are changed rather significantly after the thermal treatment and particularly after the partial reduction to low degree by hydrogen. The observed changes of the catalytic activity of the system under study are very probably in connection with the changes of the valence state of the catalytically active components of the catalyst.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 616
Author(s):  
Ján Kruželák ◽  
Andrea Kvasničáková ◽  
Klaudia Hložeková ◽  
Rastislav Dosoudil ◽  
Marek Gořalík ◽  
...  

In the present work, composite materials were prepared by incorporation of manganese-zinc ferrite, carbon black and combination of ferrite and carbon black into acrylonitrile-butadiene rubber (NBR). For cross-linking of composites, standard sulfur-based curing system was applied. The main goal was to investigate the influence of the fillers on the physical-mechanical properties of composites. Then, the electromagnetic absorption shielding ability was investigated in the frequency range 1 MHz–3 GHz. The results revealed that composites filled with ferrite provide sufficient absorption shielding performance in the tested frequency range. On the other hand, ferrite behaves as an inactive filler and deteriorates the physical-mechanical characteristics of composites. Carbon black reinforces the rubber matrix and contributes to the improvement of physical-mechanical properties. However, composites filled with carbon black are not able to absorb electromagnetic radiation in the given frequency range. Finally, the combination of carbon black and ferrite resulted in the modification of both physical-mechanical characteristics and absorption shielding ability of hybrid composites.


2021 ◽  
Author(s):  
Petar Djinović ◽  
Janez Zavašnik ◽  
Janvit Teržan ◽  
Ivan Jerman

AbstractCeO2, V2O5 and CeVO4 were synthesised as bulk oxides, or deposited over activated carbon, characterized by XRD, HRTEM, CO2-TPO, C3H8-TPR, DRIFTS and Raman techniques and tested in propane oxidative dehydrogenation using CO2. Complete oxidation of propane to CO and CO2 is favoured by lattice oxygen of CeO2. The temperature programmed experiments show the ~ 4 nm AC supported CeO2 crystallites become more susceptible to reduction by propane, but less prone to re-oxidation with CO2 compared to bulk CeO2. Catalytic activity of CeVO4/AC catalysts requires a 1–2 nm amorphous CeVO4 layer. During reaction, the amorphous CeVO4 layer crystallises and several atomic layers of carbon cover the CeVO4 surface, resulting in deactivation. During reaction, V2O5 is irreversibly reduced to V2O3. The lattice oxygen in bulk V2O5 favours catalytic activity and propene selectivity. Bulk V2O3 promotes only propane cracking with no propene selectivity. In VOx/AC materials, vanadium carbide is the catalytically active phase. Propane dehydrogenation over VC proceeds via chemisorbed oxygen species originating from the dissociated CO2. Graphic Abstract


2017 ◽  
Vol 5 (10) ◽  
pp. 4835-4841 ◽  
Author(s):  
Pradip Pachfule ◽  
Xinchun Yang ◽  
Qi-Long Zhu ◽  
Nobuko Tsumori ◽  
Takeyuki Uchida ◽  
...  

High-temperature pyrolysis of Ru nanoparticle-encapsulated MOF (Ru@HKUST-1) afforded ultrafine Cu/Ru nanoparticle-embedded porous carbon composites (Cu/Ru@C), which show high catalytic activity for ammonia borane hydrolysis.


2004 ◽  
Vol 270 (1-2) ◽  
pp. 201-208 ◽  
Author(s):  
Stéphanie Lambert ◽  
Benoı̂t Heinrichs ◽  
Alain Brasseur ◽  
André Rulmont ◽  
Jean-Paul Pirard

Sign in / Sign up

Export Citation Format

Share Document