scholarly journals A Response Characteristics Study of Widespread Power Grid Icing to El Nino

2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Yuelun Di ◽  
Jiazheng Lu ◽  
Xunjian Xu ◽  
Tao Feng ◽  
Li Li

Under the circumstances of global climate change, the El Nino event affects power grid icing by influencing the winter climate characteristics. The response characteristics of the massive power grid icing to El Nino should be of concern. Based on analysis and comparison, this study found that the overall level of response of Hunan power grid icing to El Nino was weak in 2015 winter. Areas with severe power grid icing of Hunan at 2015 El Nino period are mainly distributed at the midwest and southeastern mountainous and surrounding areas, but the maximum ice thickness extremum area range is shrinking. The maximum ice thickness at the El Nino winter enhancing (weakening) follows the trend of El Nino increasing (decreasing). Overall, the maximum ice thickness response characteristics of Hunan power grid at the El Nino period can be divided into four types. This analysis of power grid icing characteristics during El Nino period summarizes the response characteristics of icing and can guide the research of power grid icing and ant-icing countermeasures.

2016 ◽  
Vol 28 (1) ◽  
Author(s):  
Tumiar Katarina Manik ◽  
Bustomi Rosadi ◽  
Eva Nurhayati

Global warming which leads to climate change has potential affect to Indonesia agriculture activities and production. Analyzing rainfall pattern and distribution is important to investigate the impact of global climate change to local climate. This study using rainfall data from 1976-2010 from both lowland and upland area of Lampung Province. The results show that rainfall tends to decrease since the 1990s which related to the years with El Nino event. Monsoonal pattern- having rain and dry season- still excist in Lampung; however, since most rain fell below the average, it could not meet crops water need. Farmers conclude that dry seasons were longer and seasonal pattern has been changed. Global climate change might affect Lampung rainfall distribution through changes on sea surface temperature which could intensify the El Nino effect. Therefore, watching the El Nino phenomena and how global warming affects it, is important in predicting local climate especially the rainfall distribution in order to prevent significant loss in agriculture productivities.


Author(s):  
Cynthia Rosenzweig ◽  
Daniel Hillel

The climate system envelops our planet, with swirling fluxes of mass, momentum, and energy through air, water, and land. Its processes are partly regular and partly chaotic. The regularity of diurnal and seasonal fluctuations in these processes is well understood. Recently, there has been significant progress in understanding some of the mechanisms that induce deviations from that regularity in many parts of the globe. These mechanisms include a set of combined oceanic–atmospheric phenomena with quasi-regular manifestations. The largest of these is centered in the Pacific Ocean and is known as the El Niño–Southern Oscillation. The term “oscillation” refers to a shifting pattern of atmospheric pressure gradients that has distinct manifestations in its alternating phases. In the Arctic and North Atlantic regions, the occurrence of somewhat analogous but less regular interactions known as the Arctic Oscillation and its offshoot, the North Atlantic Oscillation, are also being studied. These and other major oscillations influence climate patterns in many parts of the globe. Examples of other large-scale interactive ocean–atmosphere– land processes are the Pacific Decadal Oscillation, the Madden-Julian Oscillation, the Pacific/North American pattern, the Tropical Atlantic Variability, the West Pacific pattern, the Quasi-Biennial Oscillation, and the Indian Ocean Dipole. In this chapter we review the earth’s climate system in general, define climate variability, and describe the processes related to ENSO and the other major systems and their interactions. We then consider the possible connections of the major climate variability systems to anthropogenic global climate change. The climate system consists of a series of fluxes and transformations of energy (radiation, sensible and latent heat, and momentum), as well as transports and changes in the state of matter (air, water, solid matter, and biota) as conveyed and influenced by the atmosphere, the ocean, and the land masses. Acting like a giant engine, this dynamic system is driven by the infusion, transformation, and redistribution of energy.


Author(s):  
V. Е. Levkevich

The paper shows the reasons for the intensification of risk-forming processes in Belarus caused by "aging" of existing and the arrangement of new water reservoirs. The shores of new reservoirs located in the territory of Belarus, intensively used in the national economy and densely populated, are actively reprocessed by abrasion, leading to the development of abrasion risk. The length of the abrasion coasts has increased by more than 20 km recently, which undoubtedly has an impact on the surrounding areas, causing loss of land and economic facilities. The goal of the work is to update the regional zoning of the country's territory according to abrasive risk, which should be taken into account in the forecast calculations of the sustainable development of regions based on entirely new principles and assumptions. In this work, we used the data of long-term (covering more than 40-year-long period) field observations of the author over the abrasion process and the results of a science-based analysis. We propose (using the failure tree) an abrasion risk development model and indicators characterizing the abrasion risk, taking into account the global climate change and related warming, affecting the dynamics and extent of the process of destruction and deformation of the coast. Based on a theoretical study of the mechanism for forming the dynamic equilibrium profile of abrasion coasts and the equilibrium coastline, a criterion is suggested that characterizes the stability and development of the equilibrium profile of the coastal slope required for zoning the Belarus territory by abrasion risk. Based on the generalization of the observation results for Belarus water reservoirs and the use of the proposed indicators, we performed zoning of the country’s territory by the abrasion risk, which is of practical importance for making management decisions and designating engineering measures to prevent and mitigate risk in water bodies, as well as minimizing their effects.


2021 ◽  
Vol 73 (1) ◽  
pp. A171220
Author(s):  
Gustavo Olivares-Casillas ◽  
Alex Correa-Metrio ◽  
Edyta Zawisza ◽  
Marta Wojewódka-Przybył ◽  
Maarten Blaauw ◽  
...  

The last three millennia have been characterized by global temperature oscillations of around one Celsius degree, and high frequency variability on precipitation. Two main temperature anomalies have been reported worldwide, the Medieval Warm Period (MWP) and the Little Ice Age (LIA), characterized by higher and lower than average temperatures, respectively. Precipitation variability has been mostly associated with El Niño anomalies in the Equatorial Pacific. These global variability modes have been modulated by regional factors such as sea surface temperatures and their interaction with continental landmasses. Understanding regional responses to these anomalies would shed light on ecosystem response to environmental variability, a paramount tool for conservation purposes on the light of modern climate change. Here we present a 3,000-year sedimentary record from Lake Metztitlán, located in a Biosphere Reserve under the rain shadow of the Sierra Madre Oriental. Cladoceran and geochemical analyses were used to reconstruct lacustrine dynamics through the time period encompassed by the record. Our record points to highly dynamic lacustrine systems, coupled with global and regional climatic variability. In Metztitlán, the MWP was associated with low lake levels and a high torrentiality of the precipitation reflected in high-frequency peaks of detrital material. The LIA was associated with an enlarged water body, probably as a result of lower evapotranspiration. Overall, global climatic variability resulted in high variability of regional precipitation and detrital input in the Metztitlán region, in turn associated with changes in lake morphometry and depth. Our record highlights the vulnerability of the area to changes in sea surface temperature of the Gulf of Mexico, and to changes in the frequency of El Niño events. Although the effects of global climate change in the region are inescapable, our results emphasize the importance of controlling anthropogenic activities as an additional source of pressure on the regional ecosystems.


2021 ◽  
Author(s):  
Xin Yan ◽  
Rui Wang ◽  
Zhenguo Niu

Abstract Wetland vegetation dynamics are of vital importance for comprehending changes in ecosystem structure. Under the background of global climate change, it is still unclear the change trends of wetland vegetation in China, and whether there are differences between the response of wetland vegetation and non-wetland vegetation to climate change. Based on Global Inventory Modeling and Mapping Studies (GIMMS) NDVI3g, NOAA Vegetation Health Products (VHP) and climate data, this study explored the response of wetland vegetation to climate change in China from 1981 to 2015. The results show that: 1) NDVI of wetland vegetation in China shows a downward trend on the whole after the year of 2004. 2) In water-limited zones, wetland vegetation NDVI is positive correlated with precipitation; while in temperature-limited zones, it is positive correlated with temperature. 3) El Nino and La Nina may affect wetland vegetation NDVI. The greater impact of La Nina phenomenon than El Nino phenomenon is the possible reason for the upward trend of wetland vegetation NDVI, while the greater impact of El Nino phenomenon than La Nina phenomenon may be the reason for the downward trend of NDVI. 4) The response of wetland vegetation and non-wetland vegetation to climate change is significantly different. Non-wetland vegetation responds more significantly to climate change than wetland vegetation.


Sign in / Sign up

Export Citation Format

Share Document