scholarly journals Mdivi-1 Protects CD4+ T Cells against Apoptosis via Balancing Mitochondrial Fusion-Fission and Preventing the Induction of Endoplasmic Reticulum Stress in Sepsis

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
You Wu ◽  
Yong-Ming Yao ◽  
He-Liang Ke ◽  
Lan Ying ◽  
Yao Wu ◽  
...  

Apoptosis of CD4+ T cells plays a central role in the progression of sepsis because it is associated with subsequent immunosuppression and the lack of specific treatment. Thus, developing therapeutic strategies to attenuate the apoptosis of CD4+ T cells in sepsis is critical. Several studies have demonstrated that Mdivi-1, which is a selective inhibitor of the dynamin-related protein 1 (Drp1), attenuates apoptosis of myocardial cells and neurons during various pathologic states. The present study revealed the impact of Mdivi-1 on the apoptosis of CD4+ T cells in sepsis and the potential underlying mechanisms. We used lipopolysaccharide (LPS) stimulation and cecal ligation and puncture (CLP) surgery as sepsis models in vitro and in vivo, respectively. Our results showed that Mdivi-1 attenuated the apoptosis of CD4+ T cells both in vitro and in vivo. The potential mechanism underlying the protective effect of Mdivi-1 involved Mdivi-1 reestablishing mitochondrial fusion-fission balance in sepsis, as reflected by the expression of the mitofusin 2 (MFN2) and optic atrophy 1 (OPA1) , Drp1 translocation, and mitochondrial morphology, as observed by electron microscopy. Moreover, Mdivi-1 treatment reduced reactive oxygen species (ROS) production and prevented the induction of endoplasmic reticulum stress (ERS) and associated apoptosis. After using tunicamycin to activate ER stress, the protective effect of Mdivi-1 on CD4+ T cells was reversed. Our results suggested that Mdivi-1 ameliorated apoptosis in CD4+ T cells by reestablishing mitochondrial fusion-fission balance and preventing the induction of endoplasmic reticulum stress in experimental sepsis.

2021 ◽  
Vol 118 (46) ◽  
pp. e2104721118
Author(s):  
Dominic Paquin-Proulx ◽  
Kerri G. Lal ◽  
Yuwadee Phuang-Ngern ◽  
Matthew Creegan ◽  
Andrey Tokarev ◽  
...  

Acute HIV-1 infection (AHI) results in the widespread depletion of CD4+ T cells in peripheral blood and gut mucosal tissue. However, the impact on the predominantly CD4+ immunoregulatory invariant natural killer T (iNKT) cells during AHI remains unknown. Here, iNKT cells from peripheral blood and colonic mucosa were investigated during treated and untreated AHI. iNKT cells in blood were activated and rapidly depleted in untreated AHI. At the time of peak HIV-1 viral load, these cells showed the elevated expression of cell death–associated transcripts compared to preinfection. Residual peripheral iNKT cells suffered a diminished responsiveness to in vitro stimulation early into chronic infection. Additionally, HIV-1 DNA, as well as spliced and unspliced viral RNA, were detected in iNKT cells isolated from blood, indicating the active infection of these cells in vivo. The loss of iNKT cells occurred from Fiebig stage III in the colonic mucosa, and these cells were not restored to normal levels after initiation of ART during AHI. CD4+ iNKT cells were depleted faster and more profoundly than conventional CD4+ T cells, and the preferential infection of CD4+ iNKT cells over conventional CD4+ T cells was confirmed by in vitro infection experiments. In vitro data also provided evidence of latent infection in iNKT cells. Strikingly, preinfection levels of peripheral blood CD4+ iNKT cells correlated directly with the peak HIV-1 load. These findings support a model in which iNKT cells are early targets for HIV-1 infection, driving their rapid loss from circulation and colonic mucosa.


2019 ◽  
Vol 93 (11) ◽  
Author(s):  
Jennifer A. Juno ◽  
Kathleen M. Wragg ◽  
Anne B. Kristensen ◽  
Wen Shi Lee ◽  
Kevin J. Selva ◽  
...  

ABSTRACT Sexual HIV-1 transmission occurs primarily in the presence of semen. Although data from macaque studies suggest that CCR5+ CD4+ T cells are initial targets for HIV-1 infection, the impact of semen on T cell CCR5 expression and ligand production remains inconclusive. To determine if semen modulates the lymphocyte CCR5 receptor/ligand axis, primary human T cell CCR5 expression and natural killer (NK) cell anti-HIV-1 antibody-dependent beta chemokine production was assessed following seminal plasma (SP) exposure. Purified T cells produce sufficient quantities of RANTES to result in a significant decline in CCR5bright T cell frequency following 16 h of SP exposure (P = 0.03). Meanwhile, NK cells retain the capacity to produce limited amounts of MIP-1α/MIP-1β in response to anti-HIV-1 antibody-dependent stimulation (median, 9.5% MIP-1α+ and/or MIP-1β+), despite the immunosuppressive nature of SP. Although these in vitro experiments suggest that SP-induced CCR5 ligand production results in the loss of surface CCR5 expression on CD4+ T cells, the in vivo implications are unclear. We therefore vaginally exposed five pigtail macaques to SP and found that such exposure resulted in an increase in CCR5+ HIV-1 target cells in three of the animals. The in vivo data support a growing body of evidence suggesting that semen exposure recruits target cells to the vagina that are highly susceptible to HIV-1 infection, which has important implications for HIV-1 transmission and vaccine design. IMPORTANCE The majority of HIV-1 vaccine studies do not take into consideration the impact that semen exposure might have on the mucosal immune system. In this study, we demonstrate that seminal plasma (SP) exposure can alter CCR5 expression on T cells. Importantly, in vitro studies of T cells in culture cannot replicate the conditions under which immune cells might be recruited to the genital mucosa in vivo, leading to potentially erroneous conclusions about the impact of semen on mucosal HIV-1 susceptibility.


Blood ◽  
2006 ◽  
Vol 107 (6) ◽  
pp. 2409-2414 ◽  
Author(s):  
Mojgan Ahmadzadeh ◽  
Steven A. Rosenberg

Abstract Interleukin-2 (IL-2) is historically known as a T-cell growth factor. Accumulating evidence from knockout mice suggests that IL-2 is crucial for the homeostasis and function of CD4+CD25+ regulatory T cells in vivo. However, the impact of administered IL-2 in an immune intact host has not been studied in rodents or humans. Here, we studied the impact of IL-2 administration on the frequency and function of human CD4+CD25hi T cells in immune intact patients with melanoma or renal cancer. We found that the frequency of CD4+CD25hi T cells was significantly increased after IL-2 treatment, and these cells expressed phenotypic markers associated with regulatory T cells. In addition, both transcript and protein levels of Foxp3, a transcription factor exclusively expressed on regulatory T cells, were consistently increased in CD4 T cells following IL-2 treatment. Functional analysis of the increased number of CD4+CD25hi T cells revealed that this population exhibited potent suppressive activity in vitro. Collectively, our results demonstrate that administration of high-dose IL-2 increased the frequency of circulating CD4+CD25hi Foxp3+ regulatory T cells. Our findings suggest that selective inhibition of IL-2-mediated enhancement of regulatory T cells may improve the therapeutic effectiveness of IL-2 administration. (Blood. 2006;107:2409-2414)


2017 ◽  
Vol 44 (6) ◽  
pp. 2407-2421 ◽  
Author(s):  
Yanhua Cui ◽  
Lipeng Ren ◽  
Bo Li ◽  
Jia Fang ◽  
Yuanxin Zhai ◽  
...  

Background/Aims: Busulfan is commonly used for cancer chemotherapy. Although it has the advantage of increasing the survival rate of patients, it can cause male infertility via damaging the testes and reducing sperm counts. Therefore, the underlying mechanism should be explored, and new agents should be developed to protect the male reproductive system from busulfan-induced damage. Endoplasmic reticulum stress (ERS) is considered a key contributor to numerous pathologies. Despite several studies linking ERS to toxicants, studies have yet to determine whether ERS is a contributing factor to busulfan-induced testicular damage. Melatonin is a well-known broad-spectrum antioxidant, anti-inflammatory and antitumour agent, but the effects of melatonin on busulfan-induced ERS in mouse testes damage are less documented. Methods: The effects of melatonin were measured by immunofluorescence staining, Western blot, qRT-PCR analysis and flow cytometry assay. The underlying mechanism was investigated by measuring ERS. Results: We found that ERS was strongly activated in mouse testes (in vivo) and the C18-4 cell line (in vitro) after busulfan administration. ERS-related apoptosis proteins such as caspase-12, CHOP and caspase-3 were activated, and the expression of apoptotic proteins such as P53 and PUMA were upregulated. Furthermore, we investigated whether melatonin reduced the extent of damage to mouse testes and improved the survival rates of busulfan-treated mice. When exploring the underlying mechanisms, we found melatonin could counteract ERS by decreasing the expression levels of the ERS markers GRP78, ATF6, pIRE1 and XBP1 in mouse testes and mouse SSCs (C18-4 cells). Moreover, it blocked the activation of ERS-related apoptosis proteins caspase-12, CHOP and caspase-3 and suppressed P53 and PUMA expression stimulated by busulfan both in vivo and in vitro. Conclusion: Our results demonstrate that ERS is an important mediator for busulfan-induced apoptosis. The attenuation of ERS by melatonin can prevent busulfan-treated SSCs apoptosis and protect busulfan-treated testes from damage. Thus, this study suggests that melatonin may alleviate the side effects of busulfan for male patients during clinical treatment.


2011 ◽  
Vol 12 (11) ◽  
pp. 7652-7661 ◽  
Author(s):  
Dae Young Hong ◽  
Kisang Kwon ◽  
Kyeong Ryong Lee ◽  
Young Jin Choi ◽  
Tae-Won Goo ◽  
...  

Oncotarget ◽  
2016 ◽  
Vol 7 (16) ◽  
pp. 22116-22127 ◽  
Author(s):  
Shing-Hwa Liu ◽  
Ching-Chin Yang ◽  
Ding-Cheng Chan ◽  
Cheng-Tien Wu ◽  
Li-Ping Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document