scholarly journals Experimental Investigation of Energy Evolution in Sandstone Failure during Triaxial Unloading Confining Pressure Tests

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Rui Yang ◽  
Depeng Ma ◽  
Yongjie Yang

The deformation and failure of sandstone samples are closely related to energy changes in the material. To explore the energy evolution during the process of sandstone sample damage, loading and unloading tests with different test paths were conducted. The results show that more energy is stored and consumed before the stress reaches its peak, while after the peak stress, more energy is released and consumed. Energy dissipation increases internal cracking, leads to sample damage and lithologic deterioration, and reduces the bearing capacity of the sample. During triaxial unloading of the confining pressure, the higher the initial unloading confining pressure, the more the elastic energy stored, and the more the energy released when the sandstone sample fails, resulting in more severe damage. Therefore, during the excavation of high-stress rock masses, large amounts of elastic energy stored in sandstone can be rapidly released, leading to rock burst disasters. Additionally, during triaxial unloading confining pressure tests, the damage in sandstone when the sample is close to failure increases more rapidly than that during conventional triaxial compression tests because of the unloading effect of the confining pressure. This phenomenon also illustrates that the failure of sandstone induced by unloading is more sudden than that induced by loading.

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Zhiyuan Hou ◽  
Chuanbo Hao ◽  
Fukun Xiao ◽  
Gang Liu

In order to explore the failure characteristics of sandstone under unloading conditions in deep zone with high stress, constant axial pressure and unloading confining pressure tests were conducted on a yellow sandstone sample under different initial confining pressures using the French ROCK600-50 triaxial tester, and the mechanical properties, energy conversion characteristics, and damage evolution law of sandstone failure under unloading conditions were obtained. The test results showed that the axial deformation, the confining pressure for failure, and the shear fracture energy during the failure process of sandstone under the unloading state were positively correlated with the initial confining pressure; the dilatancy amount and speed and the radial deformation were negatively correlated with the initial confining pressure, exhibiting the characteristics of dilatancy under low confining pressure and compression under high confining pressure. Before the unloading point, almost all the energy absorbed by the rock under low initial confining pressure was converted into elastic energy, while part of the energy absorbed under high initial confining pressure was converted into dissipated energy, and the higher the confining pressure, the greater the proportion of the dissipated energy converted. The higher the initial confining pressure, the greater the elastic energy, radial deformation energy, and dissipated energy at the rock fracture point. The larger the unloading confining pressure, the greater the postpeak failure energy and surplus energy of sandstone, and the greater the increase in the proportion of elastic energy converted into surplus energy. The higher the confining pressure, the larger the damage value at the unloading point; the damage speed in the unloading stage was significantly greater than that in the loading stage.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Tianran Ma ◽  
Depeng Ma ◽  
Yongjie Yang

To analyze the fractal characteristics of coal rock failure under unloading conditions, triaxial unloading confining pressure tests were carried out on coal and sandstone rock samples under different unloading rates and initial confining pressures. We examined the distribution of the surface cracks and fragmentation of the coal and sandstone samples that failed under different triaxial unloading confining pressure tests. The results showed that the fractal dimension of the surface cracks in coal and sandstone decreased as the initial unloading confining pressure increased. Thus, shear failure is more obvious in coal or sandstone with high-stress conditions caused by unloading confining pressure than in coal or sandstone with low-stress conditions. However, the fractal dimension of the surface cracks increased with the unloading rates. Additionally, the fractal dimension of the fragmentation in the coal and sandstone samples had a negative correlation with the initial unloading confining pressure. When the initial confining pressure was relatively low, the samples underwent splitting and shear failure; when the initial confining pressure was higher, the failure mode was mostly shear failure and the fragmentation of the samples was less homogeneous. In contrast, the fractal dimension of the fragmentation in the coal and sandstone increased with higher unloading rates. The lithology had a significant effect on the fractal dimension of the surface cracks and on the fragmentation. Samples with more internal fissures had more surface cracks and the fragmentation was more homogeneous when the rock failed compared with samples with less fissures under the same experimental conditions.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Tao Qin ◽  
Yanwei Duan ◽  
Hongru Sun ◽  
Honglei Liu ◽  
Lei Wang

The acoustic emission characteristics of rock specimens under different initial unloading confining pressures were tested to obtain the damage and rupture characteristics of the sandstone unloading confining pressure path. The CT scan and three-dimensional reconstruction of the fractured rock specimens were carried out to study the differences of energy evolution and acoustic emission characteristics during the failure of sandstone under different initial unloading pressures. The results show that the unloading confining pressure has a significant influence on the deformation and failure of the rock. There is a significant yielding platform for the circumferential strain and the bulk strain at the peak of the unloading pressure. The larger the initial unloading pressure is, the greater the axial absorption strain energy, the dissipative energy, and the elastic strain energy are at the peak point. After the stress peak point, the elastic strain can be quickly converted into the dissipative energy for rock damage. The elastic energy released from the moment of rock failure under high confining pressure is more concentrated. The acoustic emission ringing and b value characteristic parameters of the rock have a good correlation with the internal energy evolution of the rock, which better reflects the progressive damage of the rock under low stress and the sudden failure of high-stress unloading.


2014 ◽  
Vol 852 ◽  
pp. 441-446 ◽  
Author(s):  
Xing Xia Wang ◽  
Wen Juan Ma ◽  
Jian Wen Huang ◽  
Zai Yi Liao

The mechanical properties of rock mass under unloading conditions are essentially different from that under loading conditions. Triaxial compression tests and unloading confining pressure tests are conducted, and test results show that unloading failure is more brittle, and rock samples suffer more damage under unloading failure. The larger the initial confining pressure is, the easier of unloading failure is occurred. The increasing or decreasing values of rock deformation modulus under unloading conditions are within 10% of rock triaxial compressive strength. Unloading failure leads to deterioration of rock deformation modulus, which decreases gradually with confining pressure decreasing, and the decrease rates get bigger and bigger with unloading ratio of confining pressure increasing. Deformation modulus is only 24-34% of that under loading condition when rock strength goes down to residual strength.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jinglong Jia ◽  
Fenghai Yu ◽  
Yunliang Tan ◽  
Xuepeng Gao

The soft rock roadway in deep high-stress environment has the problems of strong rheology and large deformation. Based on the analysis of the stress distribution of the surrounding rock of the roadway in a kilometer-deep mine, rheological tests under different stress paths are carried out for mudstone in a kilometer-deep mine. The rheological deformation curve, damage characteristics, and change rule of the main mechanical parameters of mudstone under different stress conditions are studied. The results show the following: (1) the peak strength of the triaxial compression of mudstone is closely related to confining pressure, and, with increasing confining pressure, the confining pressure effect decreases gradually; (2) the strain increases slowly under uniaxial loading, and, with increasing axial pressure, the velocity of rheological deformation increases nonlinearly, and the amount of mudstone deformation increases with time; (3) under the condition of unloading confining pressure with constant axial pressure, with decreasing confining pressure, the instantaneous axial and radial strains of mudstone specimen increase nonlinearly, the rheological strain and velocity of mudstone increase gradually, and the lateral rheological strain is close to the axial rheological strain; and, (4) in the unloading confining pressure with axial compression triaxial test, with increasing deviating stress, the axial and radial instantaneous strain increments of mudstone decrease gradually, the lateral strain and rheological velocity of mudstone increase gradually, and the lateral strain is approximately 2.05 times the axial strain. These conclusions reveal the rheological characteristics of the mudstone under different surrounding rock conditions and provide a theoretical basis for the excavation deformation and support control of roadways.


2019 ◽  
Vol 56 (7) ◽  
pp. 983-991
Author(s):  
Hua Yu ◽  
Kam Ng ◽  
Dario Grana ◽  
John Kaszuba ◽  
Vladimir Alvarado ◽  
...  

The presence of compliant pores in rocks is important for understanding the stress–strain behaviors under different stress conditions. This paper describes findings on the effect of compliant pores on the mechanical behavior of a reservoir sandstone under hydrostatic and triaxial compression. Laboratory experiments were conducted at reservoir temperature on Weber Sandstone samples from the Rock Springs Uplift, Wyoming. Each experiment was conducted at three sequential stages: (stage 1) increase in the confining pressure while maintaining the pore pressure, (stage 2) increase in the pore pressure while maintaining the confining pressure, and (stage 3) application of the deviatoric load to failure. The nonlinear pore pressure – volumetric strain relationship governed by compliant pores under low confining pressure changes to a linear behavior governed by stiff pores under higher confining pressure. The estimated compressibilities of the matrix material in sandstone samples are close to the typical compressibility of quartz. Because of the change in pore structures during stage 1 and stage 2 loadings, the estimated bulk compressibilities of the sandstone sample under the lowest confining pressure decrease with increasing differential pressure. The increase in crack initiation stress is limited with increasing differential pressure because of similar total crack length governed by initial compliant porosity in sandstone samples.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Yugui Yang ◽  
Feng Gao ◽  
Hongmei Cheng ◽  
Yuanming Lai ◽  
Xiangxiang Zhang

The researches on the mechanical characteristic and constitutive models of frozen soil have important meanings in structural design of deep frozen soil wall. In the present study, the triaxial compression and creep tests have been carried out, and the mechanical characteristic of frozen silt is obtained. The experiment results show that the deformation characteristic of frozen silt is related to confining pressure under conventional triaxial compression condition. The frozen silt presents strain softening in shear process; with increase of confining pressure, the strain softening characteristic gradually decreases. The creep curves of frozen silt present the decaying and the stable creep stages under low stress level; however, under high stress level, once the strain increases to a critical value, the creep strain velocity gradually increases and the specimen quickly happens to destroy. To reproduce the deformation behavior, the disturbed state elastoplastic and new creep constitutive models of frozen silt are developed. The comparisons between experimental results and calculated results from constitutive models show that the proposed constitutive models could describe the conventional triaxial compression and creep deformation behaviors of frozen silt.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1943
Author(s):  
Fu Yi ◽  
Changbo Du

To evaluate the shear properties of geotextile-reinforced tailings, triaxial compression tests were performed on geogrids and geotextiles with zero, one, two, and four reinforced layers. The stress–strain characteristics and reinforcement effects of the reinforced tailings with different layers were analyzed. According to the test results, the geogrid stress–strain curves show hardening characteristics, whereas the geotextile stress–strain curves have strain-softening properties. With more reinforced layers, the hardening or softening characteristics become more prominent. We demonstrate that the stress–strain curves of geogrids and geotextile reinforced tailings under different reinforced layers can be fitted by the Duncan–Zhang model, which indicates that the pseudo-cohesion of shear strength index increases linearly whereas the friction angle remains primarily unchanged with the increase in reinforced layers. In addition, we observed that, although the strength of the reinforced tailings increases substantially, the reinforcement effect is more significant at a low confining pressure than at a high confining pressure. On the contrary, the triaxial specimen strength decreases with the increase in the number of reinforced layers. Our findings can provide valuable input toward the design and application of reinforced engineering.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3414
Author(s):  
Chaojun Jia ◽  
Qiang Zhang ◽  
Susheng Wang

The mechanical behavior of the sandstone at the dam site is important to the stability of the hydropower station to be built in Southwest China. A series of triaxial compression tests under different confining pressures were conducted in the laboratory. The critical stresses were determined and the relationship between the critical stress and confining pressure were analyzed. The Young’s modulus increases non-linearly with the confining pressure while the plastic strain increment Nϕ and the dilation angle ϕ showed a negative response. Scanning electron microscope (SEM) tests showed that the failure of the sandstone under compression is a coupled process of crack growth and frictional sliding. Based on the experimental results, a coupled elastoplastic damage model was proposed within the irreversible thermodynamic framework. The plastic deformation and damage evolution were described by using the micromechanical homogenization method. The plastic flow is inherently driven by the damage evolution. Furthermore, a numerical integration algorithm was developed to simulate the coupled elastoplastic damage behavior of sandstone. The main inelastic properties of the sandstone were well captured. The model will be implemented into the finite element method (FEM) to estimate the excavation damaged zones (EDZs) which can provide a reference for the design and construction of such a huge hydropower project.


Sign in / Sign up

Export Citation Format

Share Document