scholarly journals Effect of Rapid Solidification Rates on Preparation of Ni-Pb Alloy Hollow Particles with Low Pb Content

2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
Ka Gao ◽  
Yueyang Xu ◽  
Gaopeng Tang ◽  
Xiaoqin Guo ◽  
Rui Zhang

Using Ni-5 wt.% Pb alloys with low Pb content as master alloys, the Ni-5 wt.% Pb alloy hollow particles were prepared by rapid solidification. Moreover, the alloy particles’ microstructure and formation mechanism were investigated. The results show that the particles’ microstructure consisted of Ni-rich and Pb phases. The Ni-rich phase was formed in the dendrite, and the Pb phase was distributed in the grain boundary or interdendrites. With the roller speeds increasing, the sizes of hollow particles and holes were decreased which were deviated from the particle center, while the hollow ratio, shear stress, and turbulence intensity of the hollow particles were increased. The formation of alloy hollow particles is attributed to interaction between the high-speed fluid and environment gas on the liquid/gas interface. The increase in roller speeds was conducive to the formation of Ni-Pb alloy hollow particles with low Pb content.

Author(s):  
Sean D. Salusbury ◽  
Ehsan Abbasi-Atibeh ◽  
Jeffrey M. Bergthorson

Differential diffusion effects in premixed combustion are studied in a counter-flow flame experiment for fuel-lean flames of three fuels with different Lewis numbers: methane, propane, and hydrogen. Previous studies of stretched laminar flames show that a maximum reference flame speed is observed for mixtures with Le ≳ 1 at lower flame-stretch values than at extinction, while the reference flame speed for Le ≪ 1 increases until extinction occurs when the flame is constrained by the stagnation point. In this work, counter-flow flame experiments are performed for these same mixtures, building upon the laminar results by using variable high-blockage turbulence-generating plates to generate turbulence intensities from the near-laminar u′/SLo=1 to the maximum u′/SLo achievable for each mixture, on the order of u′/SLo=10. Local, instantaneous reference flamelet speeds within the turbulent flame are extracted from high-speed PIV measurements. Instantaneous flame front positions are measured by Rayleigh scattering. The probability-density functions (PDFs) of instantaneous reference flamelet speeds for the Le ≳ 1 mixtures illustrate that the flamelet speeds are increasing with increasing turbulence intensity. However, at the highest turbulence intensities measured in these experiments, the probability seems to drop off at a velocity that matches experimentally-measured maximum reference flame speeds in previous work. In contrast, in the Le ≪ 1 turbulent flames, the most-probable instantaneous reference flamelet speed increases with increasing turbulence intensity and can, significantly, exceed the maximum reference flame speed measured in counter-flow laminar flames at extinction, with the PDF remaining near symmetric for the highest turbulence intensities. These results are reinforced by instantaneous flame position measurements. Flame-front location PDFs show the most probable flame location is linked both to the bulk flow velocity and to the instantaneous velocity PDFs. Furthermore, hydrogen flame-location PDFs are recognizably skewed upstream as u′/SLo increases, indicating a tendency for the Le ≪ 1 flame brush to propagate farther into the unburned reactants against a steepening average velocity gradient.


Author(s):  
В.Г. Кульков ◽  
А.А. Сыщиков

AbstractA model of internal friction at a grain boundary containing equidistant parallel cylindrical pores is presented. Variable shear stress induces a mutual displacement of the interfacial regions matched at the segments between pores depending on their position. The values of scattered energy at each segment and total internal friction are determined. The temperature dependence of the internal friction has a form of a wide peak.


2012 ◽  
Vol 490-495 ◽  
pp. 3114-3118
Author(s):  
Xiao Ling Jiang ◽  
Zong Ming Lei ◽  
Kai Wei

With six-speed rotary viscometer measuring the rheology of drilling fluid at low temperature, during the high-speed process, the drilling fluid temperature is not constant at low temperature, which leads to the inaccuracy in rheological measurement. When R/S rheometer is used cooperating with constant low-temperature box , the temperature remains stable during the process of determining the drilling fluid rheology under low temperature. The R/S rheometer and the six-speed rotational viscometer are both coaxial rotational viscometers, but they work in different ways and the two cylindrical clearance between them are different.How to make two viscometer determination result can maintain consistent?The experimental results show that, The use of R/S rheometer, with the shear rate for 900s-1 shear stress values instead of six speed rotary viscometer shear rate for 1022s-1 shear stress values.Then use two-point formula to calculate rheological parameters.The R/S rheometer rheological parameter variation with temperature has a good linear relationship,Can better reflect the rheological properties of drilling fluids with low temperature changerule


Author(s):  
Xin Deng ◽  
Brian Weaver ◽  
Cori Watson ◽  
Michael Branagan ◽  
Houston Wood ◽  
...  

Oil-lubricated bearings are widely used in high speed rotating machines such as those used in the aerospace and automotive industries that often require this type of lubrication. However, environmental issues and risk-adverse operations have made water lubricated bearings increasingly popular. Due to different viscosity properties between oil and water, the low viscosity of water increases Reynolds numbers drastically and therefore makes water-lubricated bearings prone to turbulence effects. The turbulence model is affected by eddy-viscosity, while eddy-viscosity depends on wall shear stress. Therefore, effective wall shear stress modeling is necessary in producing an accurate turbulence model. Improving the accuracy and efficiency of methodologies of modeling eddy-viscosity in the turbulence model is important, especially considering the increasingly popular application of water-lubricated bearings and also the traditional oil-lubricated bearings in high speed machinery. This purpose of this paper is to study the sensitivity of using different methodologies of solving eddy-viscosity for turbulence modeling. Eddy-viscosity together with flow viscosity form the effective viscosity, which is the coefficient of the shear stress in the film. The turbulence model and Reynolds equation are bound together to solve when hydrodynamic analysis is performed, therefore improving the accuracy of the turbulence model is also vital to improving a bearing model’s ability to predict film pressure values, which will determine the velocity and velocity gradients in the film. The velocity gradients in the film are the other term determining the shear stress. In this paper, three approaches applying Reichardt’s formula were used to model eddy-viscosity in the fluid film. These methods are for determining where one wall’s effects begin and the other wall’s effects end. Trying to find a suitable model to capture the wall’s effects of these bearings, with aim to improve the accuracy of the turbulence model, would be of high value to the bearing industry. The results of this study could aid in improving future designs and models of both oil and water lubricated bearings.


2019 ◽  
Vol 85 ◽  
pp. 05004
Author(s):  
Nilesh Dhondoo ◽  
Ştefan-Mugur Simionescu ◽  
Corneliu Bălan

This paper reports on the measurements of wall shear stress and static pressure along a smooth static wall upon which jet impingement occurs. The effect of a single circular jet, respectively an array of jets is studied using a high speed/resolution camera. The areas of interest are the stagnation region and the wall jet region, where the jet is deflected from axial to radial direction. The effect of increasing the distance between the inlets is also investigated. The results are obtained by performing direct flow experimental visualizations and CFD numerical simulations, using the Reynolds averaged Navier-Stokes (RANS) approach with the commercial software ANSYS Fluent. The findings suggest that the smaller the nozzle-to-wall distance is, the higher the pressure peak. The wall shear stress has a bimodal distribution; at stagnation point, the wall shear stress is 0. An increase in the number of inlets produces the effect of a decrease in the stagnation point pressure. The greater the inter-inlet distance is, the greater the stagnation point pressure (there is less inter-jet mixing, less energy is lost in vortices formed between jets).


1990 ◽  
Vol 213 ◽  
Author(s):  
B.J. Pestman ◽  
J. Th. M. De Hosson ◽  
V. Vitek ◽  
F.W. Schapink

ABSTRACTThe interaction of 1/2<1 1 0> screw dislocations with symmetric [1 1 0] tilt boundaries was investigated by atomistic simulations using many-body potentials representing ordered compounds. The calculations were performed with and without an applied shear stress. The observations were: absorption into the grain boundary, attraction of a lattice Shockley partial dislocation towards the grain boundary and transmission through the grain boundary under the influence of a shear stress. It was found that the interaction in ordered compounds shows similarities to the interaction in fcc.


1989 ◽  
Author(s):  
David Japikse ◽  
David M. Karon

A detailed experimental investigation of a small centrifugal compressor stage has been completed using laser transit anemometry. Measurements at the inlet and discharge of an impeller have been made while recording data relative to a blade passage. Classical primary and secondary flow regimes within the rotor have been shown plus several compact “cell-like” regions. Various components of velocity and turbulence intensity are presented. This study has demonstrated the capability of using the laser transit anemometer for investigating the kinematics of small, high speed turbomachinery components.


Author(s):  
Yoichiro Fukuchi ◽  
Tomoki Kondo ◽  
Keita Ando

Abstract In semiconductor industry, liquid jet cleaning plays an important role because of its high cleaning efficiency and low environmental load. However, its cleaning mechanism is not revealed in detail because the experimental observation of high-speed and sub-micron droplets is challenging. Furthermore, higher impact velocity may give rise to surface erosion due to water-hammer shock loading from the impingement. To study cleaning mechanisms and surface erosion, numerical simulation of droplet impingement accounting for both viscosity and compressibility is an effective approach. In the previous study, wall-shear-flow generation has evaluated from the simulation of high-speed single droplet impingement. To evaluate more practical model of jet cleaning application, simulation of two droplets simplifying mono-dispersed splay of droplet train is favorable. Here, we numerically simulated impingement of two droplets, which allows for evaluating water-hammer pressure and wall shear stress. We consider the case of two water droplets (200 μm in diameter) that collides continuously, at speed 50 m/s, at the inter-droplet distance from 250 to 400 μm, with a no-slip rigid wall covered with a water layer (100 μm in thickness). The simulation is based on compressible Navier-Stokes equations for axisymmetric flow and the mixture of two components appears in numerically diffusion interface expressed by the volume average and advection equation. The simulation is solved by finite-volume WENO scheme that can capture both shock waves and material interface. In our simulation, the impingement of second droplet impingement gain higher shear stress than the single droplet impingement. At the case that the inter-droplet distance is 300 μm, maximum shear stress is 30.22 kPa (at the second droplet impingement), which is much larger than at the first droplet impingement (8.42 kPa). This result indicates how the second droplet impingement make wall shear flow induced by first droplet impingement stronger. From the parameter study of the inter-droplet distance, we can say that wall shear stress gets stronger as water layer thickness decreases. Furthermore, the maximum wall pressure is 1.96 MPa at the second droplet impingement, which is larger than at the first droplet impingement (1.46 MPa). From this study, the evaluation of surface erosion caused by jet cleaning is expected. The simulation suggests that multiple droplets impingement continuously may gain higher cleaning efficiency, which will give us a fundamental insight into liquid jet cleaning technologies. For further study, simulation of water column impingement and comparing the result of impingement of two droplets are expected.


Author(s):  
Pankaj Pancharia ◽  
Vikram Ramanan ◽  
Baladandayuthapani Nagarajan ◽  
S. R. Chakravarthy

Abstract The present study is an experimental investigation of the nature of acoustically induced flashback in a lab-scale dump combustor. The control parameters varied include the inlet Reynolds number (Re) and the inlet turbulence intensity. The primary bifurcation plots of the combustor from stable to the unstable condition are seen to be significantly altered by the inlet turbulence intensity, with the latter delaying the onset of combustion instability to higher Re. The analysis of multivariate high-speed data acquisition and processing (viz. unsteady pressure, flame imaging and velocity field by means of PIV) reveals the role of low-frequency high amplitude acoustics in modulating the flame. It is seen that high amplitude oscillations are sustained by two mechanisms 1. Modulation of the flame by coherent structures shedding at the step and 2. The bulk flame motion in-and-out at the edge of the step. It is seen that flow reversal at sufficiently low frequencies provide enough duration for the hot products to ignite fresh reactants upstream of the duct, which in-turn reinforces the coherent unsteadiness in the system, thereby increasing the propensity of the mixture to be ignited more upstream with every cycle. This ultimately leads to the flame flashing back till the point of premixing. This work thus addresses and reforms the occurrence of flashback being an example of loss of static stability, whereby the overriding presence of dynamic combustion instability results in a flashback to behave in a dynamic manner.


Sign in / Sign up

Export Citation Format

Share Document