scholarly journals Multiscale Stem Cell Technologies for Osteonecrosis of the Femoral Head

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yi Wang ◽  
Xibo Ma ◽  
Wei Chai ◽  
Jie Tian

The last couple of decades have seen brilliant progress in stem cell therapies, including native, genetically modified, and engineered stem cells, for osteonecrosis of the femoral head (ONFH). In vitro studies evaluate the effect of endogenous or exogenous factor or gene regulation on osteogenic phenotype maintenance and/or differentiation towards osteogenic lineage. The preclinical and clinical outcomes accelerate the clinical translation. Bone marrow mesenchymal stem cells and adipose-derived stem cells have demonstrated better effects in the treatment of femoral head necrosis. Various materials have been used widely in the ONFH treatment in both preclinical and clinical trials. In a word, in vivo and multiscale efforts are expected to overcome obstacles in the approaches for treating ONFH and provide clinical relevance and commercial strategies in the future. Therefore, we will discuss the above aspects in this paper and present our opinions.

2014 ◽  
Vol 175 ◽  
pp. 13-26 ◽  
Author(s):  
Yung-Kang Peng ◽  
Cathy N. P. Lui ◽  
Tsen-Hsuan Lin ◽  
Chen Chang ◽  
Pi-Tai Chou ◽  
...  

Neural stem cells (NSCs), which generate the main phenotypes of the nervous system, are multipotent cells and are able to differentiate into multiple cell types via external stimuli from the environment. The extraction, modification and re-application of NSCs have thus attracted much attention and raised hopes for novel neural stem cell therapies and regenerative medicine. However, few studies have successfully identified the distribution of NSCs in a live brain and monitored the corresponding extraction processes both in vitro and in vivo. To address those difficulties, in this study multi-functional uniform nanoparticles comprising an iron oxide core and a functionalized silica shell (Fe3O4@SiO2(FITC)-CD133, FITC: a green emissive dye, CD133: anti-CD133 antibody) have been strategically designed and synthesized for use as probe nanocomposites that provide four-in-one functionality, i.e., magnetic agitation, dual imaging (both magnetic resonance and optical) and specific targeting. It is shown that these newly synthesized Fe3O4@SiO2(FITC)-CD133 particles have clearly demonstrated their versatility in various applications. (1) The magnetic core enables magnetic cell collection and T2 magnetic resonance imaging. (2) The fluorescent FITC embedded in the silica framework enables optical imaging. (3) CD133 anchored on the outermost surface is demonstrated to be capable of targeting neural stem cells for cell collection and bimodal imaging.


2021 ◽  
Author(s):  
Sevil Kestane

This overview was evaluated by the development of diabetic retinopathy (DR) and the stem cell therapy approach. DR is a microvascular complication of diabetes mellitus, characterized by damage to the retinal blood vessels leading to progressive loss of vision. However, the pathophysiological mechanisms are complicated and not completely understood yet. The current treatment strategies have included medical, laser, intravitreal, and surgical approaches. It is known that the use of mesenchymal stem cells (MSC), which has a great potential, is promising for the treatment of many degenerative disorders, including the eye. In retinal degenerative diseases, MSCs were ameliorated retinal neurons and retinal pigmented epithelial cells in both in vitro and in vivo studies. Stem cell therapies show promise in neurodegenerative diseases. However, it is very important to know which type of stem cell will be used in which situations, the amount of stem cells to be applied, the method of application, and its physiological/neurophysiological effects. Therefore, it is of great importance to evaluate this subject physiologically. After stem cell application, its safety and efficacy should be followed for a long time. In the near future, widespread application of regenerative stem cell therapy may be a standard treatment in DR.


Author(s):  
Bruna Lopes ◽  
Patrícia Sousa ◽  
Rui D. Alvites ◽  
Mariana Vieira Branquinho ◽  
Ana Catarina Sousa ◽  
...  

In the past decades, regenerative medicine applied on skin lesions has been a field of constant improvement for both human and veterinary medicine. The process of healing cutaneous wound injuries implicates a well-organized cascade of molecular and biological processes. However, sometimes the normal process fails and can result in a chronic lesion. In addition, wounds are considered an increasing clinical impairment, due to the progressive ageing of the population, as well as the prevalence of concomitant diseases, such as diabetes and obesity, that represent risk aggravating factors for the development of chronic skin lesions. Stem cells regenerative potential has been recognized worldwide, including towards skin lesion repair, Tissue engineering techniques have long been successfully associated with stem cell therapies, namely the application of 3D bioprinted scaffolds. With this review we intend to explore several stem cell sources with promising aptitude towards skin regeneration, as well as different techniques used to deliver those cells and provide a supporting extracellular matrix environment, with effective outcomes. Furthermore, different studies are discussed, both in vitro and in vivo, towards their relevance in the skin regeneration field.


2021 ◽  
Vol 28 ◽  
Author(s):  
Sanjeev Gautam ◽  
Sangita Biswas ◽  
Birbal Singh ◽  
Ying Guo ◽  
Peng Deng ◽  
...  

: There is a momentous surge in the development of stem cell technology as a therapeutic and diagnostic tools. Stem cell-derived cells are currently used in various clinical trials. However, key issues and challenges involve the low differentiation efficiency, integration, and functioning of transplanted stem cells-derived cells. Extraction of bone marrow, adipose, or other mesenchymal stem cells (MSCs) involves invasive methods, specialized skills, and expensive technologies. Urine-derived cells, on the other hand, are obtained by non-invasive methods. Samples can be obtained repeatedly from patients of any age. Urine-derived cells are used to generate reprogrammed or induced pluripotent stem cells (iPSCs), which can be cultured, and differentiated into various types of cell lineages for biomedical investigations and drug testing in vitro or in vivo using model animals of human diseases. Urine cell-derived iPSCs (UiPSCs) have emerged as a major area of research and immense therapeutic significance. Given that preliminary preclinical studies are successful in terms of safety and as a regenerative tool, the UiPSCs will pave the way to develop and expedite various types of autologous stem cell therapies.


2021 ◽  
Vol 11 (7) ◽  
pp. 3000
Author(s):  
Bruna Lopes ◽  
Patrícia Sousa ◽  
Rui Alvites ◽  
Mariana Branquinho ◽  
Ana Sousa ◽  
...  

In the past decades, regenerative medicine applied on skin lesions has been a field of constant improvement for both human and veterinary medicine. The process of healing cutaneous wound injuries implicates a well-organized cascade of molecular and biological processes. However, sometimes the normal process fails and can result in a chronic lesion. In addition, wounds are considered an increasing clinical impairment, due to the progressive ageing of the population, as well as the prevalence of concomitant diseases, such as diabetes and obesity, that represent risk-aggravating factors for the development of chronic skin lesions. Stem cells’ regenerative potential has been recognized worldwide, including towards skin lesion repair, Tissue engineering techniques have long been successfully associated with stem cell therapies, namely the application of three-dimensional (3D) bioprinted scaffolds. With this review, we intend to explore several stem cell sources with promising aptitude towards skin regeneration, as well as different techniques used to deliver those cells and provide a supporting extracellular matrix environment, with effective outcomes. Furthermore, different studies are discussed, both in vitro and in vivo, in terms of their relevance in the skin regeneration field.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
V. Nardone ◽  
R. Zonefrati ◽  
C. Mavilia ◽  
C. Romagnoli ◽  
S. Ciuffi ◽  
...  

Development of tools to be used forin vivobone tissue regeneration focuses on cellular models and differentiation processes. In searching for all the optimal sources, adipose tissue-derived mesenchymal stem cells (hADSCs or preadipocytes) are able to differentiate into osteoblasts with analogous characteristics to bone marrow mesenchymal stem cells, producing alkaline phosphatase (ALP), collagen, osteocalcin, and calcified nodules, mainly composed of hydroxyapatite (HA). The possibility to influence bone differentiation of stem cells encompasses local and systemic methods, including the use of drugs administered systemically. Among the latter, strontium ranelate (SR) represents an interesting compound, acting as an uncoupling factor that stimulates bone formation and inhibits bone resorption. The aim of our study was to evaluate thein vitroeffects of a wide range of strontium (Sr2+) concentrations on proliferation, ALP activity, and mineralization of a novel finite clonal hADSCs cell line, named PA20-h5. Sr2+promoted PA20-h5 cell proliferation while inducing the increase of ALP activity and gene expression as well as HA production duringin vitroosteoinduction. These findings indicate a role for Sr2+in supporting bone regeneration during the process of skeletal repair in general, and, more specifically, when cell therapies are applied.


2012 ◽  
Vol 70 (7) ◽  
pp. 540-546 ◽  
Author(s):  
Guilherme Lepski

Cell therapies, based on transplantation of immature cells, are being considered as a promising tool in the treatment of neurological disorders. Many efforts are being concentrated on the development of safe and effective stem cell lines. Nevertheless, the neurogenic potential of some cell lines, i.e., the ability to generate mature neurons either in vitro or in vivo, is largely unknown. Recent evidence indicate that this potential might be distinct among different cell lines, therefore limiting their broad use as replacement cells in the central nervous system. Here, we have reviewed the latest advancements regarding the electrophysiological maturation of stem cells, focusing our attention on fetal-derived-, embryonic-, and induced pluripotent stem cells. In summary, a large body of evidence supports the biological safety, high neurogenic potential, and in some diseases probable clinical efficiency related to fetal-derived cells. By contrast, reliable data regarding embryonic and induced pluripotent stem cells are still missing.


2021 ◽  
Author(s):  
Yonger Xue ◽  
Rafia Baig ◽  
Yizhou Dong

Abstract Stem cells have been utilized as ''living drugs'' in clinics for decades. Their self-renewal, differentiation, and immunomodulating properties provide potential solutions for a variety of malignant diseases and disorders. However, the pathological environment may diminish the therapeutic functions and survival of the transplanted stem cells, causing failure in clinical translation. To overcome these challenges, researchers have developed biomaterial-based strategies that facilitate in vivo tracking, functional engineering, and protective delivery of stem cells, paving the way for next-generation stem cell therapies. In this perspective, we briefly overview different types of stem cells and the major clinical challenges and summarize recent progress of biomaterials applied to boost stem cell therapies.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Rita Matta ◽  
Seyoung Lee ◽  
Nafiisha Genet ◽  
Karen K. Hirschi ◽  
Jean-Leon Thomas ◽  
...  

AbstractStem cell therapies demonstrate promising results as treatment for neurological disease and injury, owing to their innate ability to enhance endogenous neural tissue repair and promote functional recovery. However, delivery of undifferentiated and viable neuronal stem cells requires an engineered delivery system that promotes integration of transplanted cells into the inflamed and cytotoxic region of damaged tissue. Within the brain, endothelial cells (EC) of the subventricular zone play a critical role in neural stem cell (NSC) maintenance, quiescence and survival. Therefore, here, we describe the use of polyethylene glycol microbeads for the coincident delivery of EC and NSC as a means of enhancing appropriate NSC quiescence and survival during transplantation into the mouse brain. We demonstrate that EC and NSC co-encapsulation maintained NSC quiescence, enhanced NSC viability, and facilitated NSC extravasation in vitro, as compared to NSC encapsulated alone. In addition, co-encapsulated cells delivered to an in vivo non-injury model reduced inflammatory response compared to freely injected NSC. These results suggest the strong potential of a biomimetic engineered niche for NSC delivery into the brain following neurological injury.


Sign in / Sign up

Export Citation Format

Share Document