Recent advances of biomaterials in stem cell therapies

2021 ◽  
Author(s):  
Yonger Xue ◽  
Rafia Baig ◽  
Yizhou Dong

Abstract Stem cells have been utilized as ''living drugs'' in clinics for decades. Their self-renewal, differentiation, and immunomodulating properties provide potential solutions for a variety of malignant diseases and disorders. However, the pathological environment may diminish the therapeutic functions and survival of the transplanted stem cells, causing failure in clinical translation. To overcome these challenges, researchers have developed biomaterial-based strategies that facilitate in vivo tracking, functional engineering, and protective delivery of stem cells, paving the way for next-generation stem cell therapies. In this perspective, we briefly overview different types of stem cells and the major clinical challenges and summarize recent progress of biomaterials applied to boost stem cell therapies.

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yi Wang ◽  
Xibo Ma ◽  
Wei Chai ◽  
Jie Tian

The last couple of decades have seen brilliant progress in stem cell therapies, including native, genetically modified, and engineered stem cells, for osteonecrosis of the femoral head (ONFH). In vitro studies evaluate the effect of endogenous or exogenous factor or gene regulation on osteogenic phenotype maintenance and/or differentiation towards osteogenic lineage. The preclinical and clinical outcomes accelerate the clinical translation. Bone marrow mesenchymal stem cells and adipose-derived stem cells have demonstrated better effects in the treatment of femoral head necrosis. Various materials have been used widely in the ONFH treatment in both preclinical and clinical trials. In a word, in vivo and multiscale efforts are expected to overcome obstacles in the approaches for treating ONFH and provide clinical relevance and commercial strategies in the future. Therefore, we will discuss the above aspects in this paper and present our opinions.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Meng Wang ◽  
Yixuan Luo ◽  
Yin Yu ◽  
Fei Chen

The osteochondral tissue is an interface between articular cartilage and bone. The diverse composition, mechanical properties, and cell phenotype in these two tissues pose a big challenge for the reconstruction of the defected interface. Due to the availability and inherent regenerative therapeutic properties, stem cells provide tremendous promise to repair osteochondral defect. This review is aimed at highlighting recent progress in utilizing bioengineering approaches to improve stem cell therapies for osteochondral diseases, which include microgel encapsulation, adhesive bioinks, and bioprinting to control the administration and distribution. We will also explore utilizing synthetic biology tools to control the differentiation fate and deliver therapeutic biomolecules to modulate the immune response. Finally, future directions and opportunities in the development of more potent and predictable stem cell therapies for osteochondral repair are discussed.


2019 ◽  
Vol 51 (11) ◽  
pp. 1-20 ◽  
Author(s):  
Jun-Cheng Guo ◽  
Yi-Jun Yang ◽  
Jin-Fang Zheng ◽  
Jian-Quan Zhang ◽  
Min Guo ◽  
...  

AbstractHepatocellular carcinoma (HCC) is a major cause of cancer-related deaths, but its molecular mechanisms are not yet well characterized. Long noncoding RNAs (lncRNAs) play crucial roles in tumorigenesis, including that of HCC. However, the role of homeobox A11 antisense (HOXA11-AS) in determining HCC stem cell characteristics remains to be explained; hence, this study aimed to investigate the effects of HOXA11-AS on HCC stem cell characteristics. Initially, the expression patterns of HOXA11-AS and HOXA11 in HCC tissues, cells, and stem cells were determined. HCC stem cells, successfully sorted from Hep3B and Huh7 cells, were transfected with short hairpin or overexpression plasmids for HOXA11-AS or HOXA11 overexpression and depletion, with an aim to study the influences of these mediators on the self-renewal, proliferation, migration, and tumorigenicity of HCC stem cells in vivo. Additionally, the potential relationship and the regulatory mechanisms that link HOXA11-AS, HOXA11, and the Wnt signaling pathway were explored through treatment with Dickkopf-1 (a Wnt signaling pathway inhibitor). HCC stem cells showed high expression of HOXA11-AS and low expression of HOXA11. Both HOXA11-AS silencing and HOXA11 overexpression suppressed the self-renewal, proliferation, migration, and tumorigenicity of HCC stem cells in vivo, as evidenced by the decreased expression of cancer stem cell surface markers (CD133 and CD44) and stemness-related transcription factors (Nanog, Sox2, and Oct4). Moreover, silencing HOXA11-AS inactivated the Wnt signaling pathway by decreasing the methylation level of the HOXA11 promoter, thereby inhibiting HCC stem cell characteristics. Collectively, this study suggested that HOXA11-AS silencing exerts an antitumor effect, suppressing HCC development via Wnt signaling pathway inactivation by decreasing the methylation level of the HOXA11 promoter.


2019 ◽  
Vol 116 (4) ◽  
pp. 1447-1456 ◽  
Author(s):  
Rong Lu ◽  
Agnieszka Czechowicz ◽  
Jun Seita ◽  
Du Jiang ◽  
Irving L. Weissman

While the aggregate differentiation of the hematopoietic stem cell (HSC) population has been extensively studied, little is known about the lineage commitment process of individual HSC clones. Here, we provide lineage commitment maps of HSC clones under homeostasis and after perturbations of the endogenous hematopoietic system. Under homeostasis, all donor-derived HSC clones regenerate blood homogeneously throughout all measured stages and lineages of hematopoiesis. In contrast, after the hematopoietic system has been perturbed by irradiation or by an antagonistic anti-ckit antibody, only a small fraction of donor-derived HSC clones differentiate. Some of these clones dominantly expand and exhibit lineage bias. We identified the cellular origins of clonal dominance and lineage bias and uncovered the lineage commitment pathways that lead HSC clones to different levels of self-renewal and blood production under various transplantation conditions. This study reveals surprising alterations in HSC fate decisions directed by conditioning and identifies the key hematopoiesis stages that may be manipulated to control blood production and balance.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Geru Zhang ◽  
Qiwen Li ◽  
Quan Yuan ◽  
Shiwen Zhang

Stem cells play an irreplaceable role in the development, homeostasis, and regeneration of the craniofacial bone. Multiple populations of tissue-resident craniofacial skeletal stem cells have been identified in different stem cell niches, including the cranial periosteum, jawbone marrow, temporomandibular joint, cranial sutures, and periodontium. These cells exhibit self-renewal and multidirectional differentiation abilities. Here, we summarized the properties of craniofacial skeletal stem cells, based on their spatial distribution. Specifically, we focused on the in vivo genetic fate mapping of stem cells, by exploring specific stem cell markers and observing their lineage commitment in both the homeostatic and regenerative states. Finally, we discussed their application in regenerative medicine.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 238-238 ◽  
Author(s):  
Edward Kavalerchik ◽  
Jason Gotlib ◽  
Ifat Geron ◽  
Annelie Abrahamsson ◽  
Wolfgang Wrasidlo ◽  
...  

Abstract Introduction A growing proportion of chronic myelogenous leukemia (CML) patients show evidence of disease progression. Recent research suggests that leukemia stem cells (LSC) that share phenotypic characteristics with granulocyte-macrophage progenitors (GMP) are involved in CML progression. These LSC have aberrantly gained self-renewal capacity as a result of enhanced Wnt/beta-catenin signaling. We assayed the capacity of novel Wnt/beta-catenin antagonists to inhibit CML LSC. Methods To assay the efficacy of a novel Wnt inhibitor, MC-001, HEK293 cells were transfected with a Wnt-dependent reporter gene and expression plasmid for Dsh. After 16h, the cells were treated for 24 h with MCC-001, a novel marine sponge derived inhibitor, at varying concentrations and the reporter gene activity was measured. All cells were also transfected with a b-gal reporter gene to control for transfection efficiency. To assess the effects of MCC-001 and other Wnt inhibitors on Wnt/beta-catenin induced self-renewal, hematopoietic stem cells (HSC), GMP and lineage positive cells from normal (n=8) and advanced phase CML (n=8) peripheral blood and marrow (n=8) were clone sorted with the aid of a FACS Aria into methocult media (Stem Cell Technologies) with or without Wnt inhibitors including recombinant Dkk1, lentiviral axin or MCC-001. On day 10, individual colonies were plucked and replated in new methylcellulose and the replating efficiency determined at day 10. To establish an in vivo CML LSC model, HSC, GMP and lineage positive cells were transduced with a lentiviral luciferase GFP for 48 hours and transplanted intrahepatically into newborn immunocompromised mice (RAG2−/−gamma−/−) mice that facilitate high levels of human hematopoietic progenitor engraftment. Results The HEK293 beta-catenin reporter assay revealed that the MC-001 IC50 was 2.1 microM. In comparative Wnt inhibitor replating assays (n=8), recombinant Dkk1 did not inhibit CML HSC (n=8) while lentiviral axin and MCC-001 (at 2 and 10 microM) inhibited both CML HSC and CML GMP at doses that spared normal HSC replating (Figure 1). Transplantation of CML HSC, GMP and lineage positive cells into RAG2−/−gamma−/− mice demonstrated that only CML GMP provided serial transplantation potential and thus, were enriched for the LSC population (Figure 2). Conclusions Selective Wnt/beta-catenin inhibition with a marine sponge derived beta-catenin antagonist, MCC-001, blocks in vitro replating capacity of CML LSC at doses that spare normal HSC. Current experiments focus on in vivo inhibition of LSC self-renewal with novel Wnt inhibitors in a robust CML LSC bioluminescent imaging model (Figure 2). Figure 1. Chronic Myelogenous Leukemia Stem Cell Inhibition with MCC-001: A novel β-catenin Inhibitor Figure 1. Chronic Myelogenous Leukemia Stem Cell Inhibition with MCC-001: A novel β-catenin Inhibitor Figure 2. Bioluminescent Chronic Myelogenous Leukemia Stem Cell Transplantation Model. Figure 2. Bioluminescent Chronic Myelogenous Leukemia Stem Cell Transplantation Model.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 572-572
Author(s):  
Hitoshi Takizawa ◽  
Chandra S Boddupalli ◽  
Roland R Regoes ◽  
Sebastian Bonhoeffer ◽  
Markus G Manz

Abstract Abstract 572 Life-long blood production is maintained by a small fraction of hematopoietic stem cells (HSCs). Steady-state HSC cycling kinetics have been evaluated by in vivo labeling assays with 5-bromo-2-deoxyuridine (BrdU) (Cheshier et. al., PNAS 1999; Kiel et al., Nature 2007), biotin (Nygren et. al., 2008) and histon 2B-green fluorescent protein (H2B-GFP) transgenic mouse models (Wilson et. al., 2008; Foudi et. al., 2009). While the former studies showed that all HSCs equally divide and likely contribute to blood formation (clonal maintenance), the latter suggested that some HSCs divide frequently and contribute to blood formation until cell death or full differentiation, while some HSCs are quiescent and then get activated to follow the same fate as frequently dividing ones (clonal succession). However, due to low resolution, none of the labeling techniques used were able to track single cell divisions. Furthermore, methods used might have direct influence on cycling activity of HSCs. Thus it remains to be determined a) if HSC divide continuously, sequentially or repetitively and contribute to steady-state hematopoiesis, b) what is a relationship between divisional history and repopulating ability, and c) how self-renewal and differentiation capacity of HSC is impacted by naturally-occurring severe hematopoietic challenges as infections. To address this directly, we set up a high resolution non-invasive in vivo HSC divisional tracking assay with CFSE (carboxyfluorescein diacetate succinimidyl ester). We here show that i.v. transfer of CFSE-labeled HSCs into non-conditioned congenic recipient mice allows evaluation of steady-state HSC cycling-dynamics as CFSE is equally distributed to daughter cells upon cellular division. Transfer of Lin-c-kit+Sca-1+ cells (LKS) into non-irradiated mice revealed non- and 1–7x divided LKS in recipient bone marrow over 20 weeks. To test in vivo limiting dilution and single cell HSC potential, non- or ≥5x divided cells were sorted based on divisional history from primary recipients at different weeks after transplantation, and transplanted into lethally irradiated secondary recipients. Single non-divided LKS at 3 weeks post primary transfer was able to multi-lineage repopulate 24% of recipients long-term, while 50 of ≥5x divided LKS did not engraft. Interestingly, both non- and ≥5x divided LKS at 7 or 12–14 weeks after primary transfer engrafted and showed fluctuating contribution to multi-lineage hematopoiesis over serial transplantation. Mathematical modeling based on limiting dilution transplantation, revealed no evidence for a dichotomy of biologically defined HSCs in different groups. Instead, steady-state serial transplantation with temporary fast-cycling cells revealed that they can slow down over time, suggesting dynamically changing cycling activity of HSC. We next tested the effects of hemato-immunological challenge on HSC proliferation. Mice transplanted with CFSE-labeled LKS cells were repetitively treated with LPS. Analysis 8 days after final LPS injection, i.e. three weeks after steady-state transplantation revealed that all LKS entered cell cycle and the number of ≥5x divided LKS was increased. Secondary transplantation showed that 2–4 time and ≥5x divided LKS from LPS-treated mice reconstituted multi-lineage hematopoiesis whereas both fractions from control mice failed to engraft. This data clearly indicate that HSCs are activated from quiescence upon LPS challenge and provide evidence, that naturally-occurring hemato-immunological challenges, such as gram-negative bacterial infection induces proliferation and self-renewal of HSCs. Our data suggest in contrast to previously proposed concepts, a novel “dynamic repetition” model for HSC cycling activity and blood formation where some HSCs participate in hematopoiesis for a while, subsequently enter a resting phase and get reactivated again to contribute to blood formation in repetitive cycles, leading to homogenous total divisional history of all HSCs at end of life. These findings might represent a biological principle that could hold true for other somatic stem cell-sustained organ-systems and might have developed during evolution to ensure equal distribution of work-load, efficient recruitment of stem cells during demand, and reduction of risk to acquire genetic alterations or fatal damage to the whole HSC population at any given time. Disclosures: No relevant conflicts of interest to declare.


2014 ◽  
Vol 175 ◽  
pp. 13-26 ◽  
Author(s):  
Yung-Kang Peng ◽  
Cathy N. P. Lui ◽  
Tsen-Hsuan Lin ◽  
Chen Chang ◽  
Pi-Tai Chou ◽  
...  

Neural stem cells (NSCs), which generate the main phenotypes of the nervous system, are multipotent cells and are able to differentiate into multiple cell types via external stimuli from the environment. The extraction, modification and re-application of NSCs have thus attracted much attention and raised hopes for novel neural stem cell therapies and regenerative medicine. However, few studies have successfully identified the distribution of NSCs in a live brain and monitored the corresponding extraction processes both in vitro and in vivo. To address those difficulties, in this study multi-functional uniform nanoparticles comprising an iron oxide core and a functionalized silica shell (Fe3O4@SiO2(FITC)-CD133, FITC: a green emissive dye, CD133: anti-CD133 antibody) have been strategically designed and synthesized for use as probe nanocomposites that provide four-in-one functionality, i.e., magnetic agitation, dual imaging (both magnetic resonance and optical) and specific targeting. It is shown that these newly synthesized Fe3O4@SiO2(FITC)-CD133 particles have clearly demonstrated their versatility in various applications. (1) The magnetic core enables magnetic cell collection and T2 magnetic resonance imaging. (2) The fluorescent FITC embedded in the silica framework enables optical imaging. (3) CD133 anchored on the outermost surface is demonstrated to be capable of targeting neural stem cells for cell collection and bimodal imaging.


2017 ◽  
Vol 71 (0) ◽  
pp. 0-0 ◽  
Author(s):  
Paulina Gapska ◽  
Maciej Kurpisz

There is a variety of mechanisms(s) factor(s) that may influence stem cell therapies for heart regeneration. Among the best candidates for stem cell source are: mesenchymal stem cells (also those isolated from adipose tissue), cardiac cell progenitors (CPC) and descendants of iPSC cells. iPSC/s can be potentially beneficial although their pluripotent induction has been still in question due to: low propagation efficacy, danger of genomic integration/instability, biological risk of current vector system teratoma formation etc. which have been discussed in this review. Optimization protocols are required in order to enhance stem cells resistance to pathological conditions that they may encounter in pathological organ and to increase their retention. Combination between gene transfer and stem cell therapy is now more often used in pre-clinical studies with the prospect of subsequent clinical trials. Complementary substances have been contemplated to support stem cell viability (mainly anti-inflammatory and anti- apoptotic agents), which have been tested in animal models with promising results. Integration of nanotechnology both for efficient stem cell imaging as well as with the aim to provide cell supporting scaffolds seem to be inevitable for further development of cellular therapies. The whole organ (heart) reconstruction as well as biodegradable scaffolds and scaffold-free cell sheets have been also outlined.


Sign in / Sign up

Export Citation Format

Share Document