scholarly journals Experimental Investigation on Mechanical Properties of Cemented Paste Backfill under Different Gradations of Aggregate Particles and Types and Contents of Cementing Materials

2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Jiangyu Wu ◽  
Meimei Feng ◽  
Guansheng Han ◽  
Xiaoyan Ni ◽  
Zhanqing Chen

Obtaining the optimal gradation of aggregate particles is beneficial for improving the strength of cemented paste backfill (CPB). Consequently, the uniaxial compression tests with acoustic emission (AE) monitoring were performed on CPB, for which the aggregate particles satisfied the Talbot grading theory. The effects of the Talbot indices of aggregate particles and types and contents of cementing materials on the mechanical properties of CPB were analyzed. The AE characteristics and stress-strain behaviors of CPB were discussed. The results show that the specific Talbot index reflected the optimal strength and deformation properties of CPB is 0.45, and the maximum UCS is 7.6 MPa. The mechanical properties of CPB also can be optimized by changing the type of cementing material and increasing the content of cementing material. The effects of the Talbot indices of aggregate particles and types and contents of cementing materials on the crack damages reflected by the AE signals of CPB are mainly observed in the oa stage and ab stage during the loading process.

2016 ◽  
Vol 858 ◽  
pp. 219-224 ◽  
Author(s):  
Eduardo Eiler Batista de Araújo ◽  
Dragana Simon ◽  
Fagner Alexandre Nunes de França ◽  
Osvaldo de Freitas Neto ◽  
Olavo Francisco dos Santos Jr.

Deep mining operations require special measures in order to keep safe and economic aspects. After mine ore is extracted, voids are created and need to be filled with high-strength, low-cost materials. Cemented Paste Backfill (CPB) has recently become one of the main alternatives in filling stopes. Although numerous papers have mentioned the magnitudes of the strength of this material, its behavior under high confining pressures is still not well understood. Therefore, the purpose of this study is to increase the knowledge regarding the CPB behavior. Triaxial compression tests were performed using a Hoek Cell and Load Frame System under high confining pressures. Samples with two different binder contents were used in order to obtain the CPB strength improvement. Besides the self-weight consolidation curing method, samples were subjected to a different curing method that simulated a zero gravity condition (rotating wheel) in the first curing day to compare their mixture properties. The results suggested that both curing method and binder content have influenced the geomechanical properties of Cemented Paste Backfill. By increasing the curing time, the CPB shear strength has increased slightly, whereas specimens with higher binder content presented a significant increase in shear strength values.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xinguo Zhang ◽  
Shichuan Zhang

Cemented paste backfill containing coal gangue and fly ash (CGFACPB) is an emerging backfill technique for coal mines that allows environmentally hazardous coal gangue and fly ash to be reused in the underground goaf. Meanwhile, CGFACPB can provide an efficient ground support and reduce the surface subsidence. Due to the difference of consolidation environment between the laboratory and the field, the mechanical properties of the cemented paste backfill vary significantly. In this paper, the core specimens were collected from an underground coal mine where the CGFACPB was used for coal mining, and the mechanical properties of the collected specimens were investigated. The cores were obtained from the underground coal mine, and then the standard cylinders or discs were prepared in laboratory. The uniaxial compressive strength (UCS), Young’s modulus, and Poisson’s ratio were determined by the compression tests, and the tensile strength was achieved by the Brazilian test. Then the internal friction angle and cohesion were calculated using the improved Mohr–Coulomb strength criterion. The results showed the development of UCS can be divided into four stages, and the final long-term stable value was about 5.1 MPa. The development of Young’s modulus had similar trend. Young’s modulus had a range from 550 MPa to 750 MPa and the mean value of 675 MPa. Poisson’s ratio gradually increased with the underground curing duration and eventually approached the stable value of 0.18. The failure type of compression samples was mainly single-sided shear failure. The development of tensile strength can be divided into two stages, and the stable value of the tensile strength was about 1.05 MPa. The development of cohesion can be divided into four stages, and the stable value was about 1.75 MPa. The stable value of the internal friction angle was about 25°. This study can provide significant references for not only the long-term stability evaluation of CGFACPB in the field but also the design of optimal recipe of the cemented paste backfill (CPB).


2018 ◽  
Vol 36 (4) ◽  
pp. 2171-2187 ◽  
Author(s):  
Naguleswaran Niroshan ◽  
Ling Yin ◽  
Nagaratnam Sivakugan ◽  
Ryan Llewellyn Veenstra

2014 ◽  
Vol 638-640 ◽  
pp. 1391-1396
Author(s):  
Hong Yu Zhou ◽  
Yi Bo Chen ◽  
Ya Ran Zhang ◽  
Hai Qian Wang

Introducing research progress of rate-dependent tests by domestic and foreign scholars, strain-rate effect on dynamic mechanical properties of concrete are reviewed. Classified descriptions of research results on dynamic load tests of concrete at home and abroad are provided, including uniaxial compression tests, uniaxial tensile tests, and multi-axis tests; strain-rate effects on concrete strength and deformation properties in each test are respectively discussed; and strain-rate effect on concrete energy absorption capability are described.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Bo Zhang ◽  
Jie Xin ◽  
Lang Liu ◽  
Lijie Guo ◽  
Ki-Il Song

The aim of this study was to examine the microstructure of cemented paste backfill (CPB) during its development and relate the characteristics of the microstructure to the physical and mechanical properties of CPB. The geometry and morphology of the microstructures of CPB were observed by the scanning electron microscopy (SEM). The characteristics including pore size, pore shape, and orientation of the microstructures of CPB at different curing times were analyzed based on the SEM images. The porosity, fractal dimension, and probability entropy were characterized using the Particles and Pore Recognition and Analysis System (PPRAS). It was found that the pore size, pore shape, and orientation of the microstructure of CPB significantly change as the curing time increases, resulting in the increase of UCS. Meanwhile, the arrangement of the pores affects the mechanical properties of CPB. At the early age of CPB development, the probability entropy is above 0.96, indicating a chaotic pore distribution and no obvious orientation. At the late age of CPB development, the probability entropy becomes smaller and the order and orientation of the pore distribution are enhanced, leading to an increase in USC. The UCS of CPB is also greatly affected by the characteristics of the pore morphology. During the development of CPB, the pore shape becomes smoother. The UCS of CPB approximately linearly improves with an increase in the average roundness of pores.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Yin Liu ◽  
Hao Li ◽  
Haifeng Wu

To investigate the effect of temperature-chemical coupling on the mechanical properties of cemented paste backfill, three temperatures (20°C, 35°C, and 50°C) and sodium sulfate solution mass concentrations (3%, 5%, and 7%) are applied to simulate the complex environment in a mine. Uniaxial compressive strength and the CPB stress-strain relationship are investigated by applying stress, and the deterioration mechanism was analyzed theoretically according to physical and chemical reactions. At the same time, a structural model of the CPB deterioration mechanism under TC coupling is constructed. Combined with analysis through X-ray diffraction and scanning electron microscopy, it is shown that ettringite and gypsum are the main erosive substances that destroy the structure of CPB and that increased temperatures accelerate the chemical reaction. The concentration change consumes calcium hydroxide, changing the relationship between ettringite and gypsum. Sodium sulphate crystallization is the main form of physical deterioration. The continuous load accelerates the inelastic deformation time of CPB, resulting in a large yield deformation process.


Sign in / Sign up

Export Citation Format

Share Document