scholarly journals A Cluster and Process Collaboration-Aware Method to Achieve Service Substitution in Cloud Service Processes

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Qiang Hu ◽  
Jiaji Shen

Some cloud services may be invalid since they are located in a dynamically changing network environment. Service substitution is necessary when a cloud service cannot be used. Existing work mainly concerned on service function and quality in service substitution. To select a more suitable substitutive service, process collaboration similarity needs to be considered. This paper proposes a cluster and process collaboration-aware method to achieve service substitution. To compute the process collaboration similarity, we use logic Petri nets to model service processes. All the service processes are transformed into path strings. Service vectors for cloud services are generated by Word2Vec from these path strings. Process collaboration similarity of two cloud services is obtained by computing the cosine value of their service vectors. Meanwhile, similar cloud services are classified as a service cluster. By calculating function similarity and quality matching, a candidate set for services substitution is generated. The service with the highest process collaboration similarity to invalid one in the candidate set is chosen as the substitutive one. Simulation experiments show the proposed method is less time-consuming than traditional methods in finding substitutive service. Meanwhile, the substitutive one has a high cooccurrence rate with neighboring services of the invalid cloud service. Thus, the proposed method is efficient and integrates process collaboration well in service substitution.

2019 ◽  
Vol 23 (2) ◽  
pp. 153-173
Author(s):  
M. Sadeq Jaafar

Purpose of research. The object of the study is a network cloud service built on the basis of a replicated database. Data in distributed computing systems are replicated in order to ensure the reliability of their storage, facilitate access to data as well as to improve the storage system performance. In this regard, the problem of analyzing the effectiveness of processing the queries to replicated databases in a network-based cloud environment, and, in particular, the problem of organizing priority query queues for updating databae copies (update requests) and for searching and reading information in databases (query-requests). The purpose of this work is to study and organize priority modes in a network distributed computing system with cloud service architecture.Methods. The study was conducted on the basis of two types of behavioural patterns: models based on Petri nets to describe and verify the functioning of a distributed computing system with replicated databases represented as a pool of resource units with several units, and models based on the GPSS simulation language for possible evaluation of passage of query time of each type in queues depending on the priority of queries.Results. Based on two simulation methods, the operation of a cloud system with database replicas was analyzed. In this system two distributed cloud computing systems interact: MANET Cloud based on a wireless network and Internet Cloud based on the Internet. These databases together are the basis of the DBaaSoD (Data Bases as a Service on Demand) cloud service (databases as a service organized at user’s query). To study this system the models of two classes were developed. The model based on Petri nets is designed to test the simulated distributed application for proper functioning. The decisions on the mapping of Petri nets on the architecture of computer networks are discussed. The simulation statistical model is used to compare the priority and non-priority maintenance modes of query- and update-requests by the criterion of average passage of time of queries in queues.Conclusion. System models based on Petri nets were tested, which showed their liveness and security, which makes it possible to move from models to building formalized specifications for network applications for network cloud services in distributed computing systems with replicated databases. The study of GPSS-model showed that in the case of priority service of update-requests, the time of passage for them is reduced by about 2 to 4 times compared with query-requests, depending on the intensity of the query-requests. In the non-priority mode, the serving conditions for update-queries deteriorate and the time of passage in the queue for them increases by about 2 to 6 times as compared with query-requests depending on the intensity of the query-requests.


2020 ◽  
Vol 44 (5) ◽  
pp. 953-975
Author(s):  
Emna Ben-Abdallah ◽  
Khouloud Boukadi ◽  
Mohamed Hammami ◽  
Mohamed Hedi Karray

PurposeThe purpose of this paper is to analyze cloud reviews according to the end-user context and requirements.Design/methodology/approachpropose a comprehensive knowledge base composed of interconnected Web Ontology Language, namely, modular ontology for cloud service opinion analysis (SOPA). The SOPA knowledge base will be the basis of context-aware cloud service analysis using consumers' reviews. Moreover, the authors provide a framework to evaluate cloud services based on consumers' reviews opinions.FindingsThe findings show that there is a positive impact of personalizing the cloud service analysis by considering the reviewers' contexts in the performance of the framework. The authors also proved that the SOPA-based framework outperforms the available cloud review sites in term of precision, recall and F-measure.Research limitations/implicationsLimited information has been provided in the semantic web literature about the relationships between the different domains and the details on how that can be used to evaluate cloud service through consumer reviews and latent opinions. Furthermore, existing approaches are lacking lightweight and modular mechanisms which can be utilized to effectively exploit information existing in social media.Practical implicationsThe SOPA-based framework facilitates the opinion based service evaluation through a large number of consumer's reviews and assists the end-users in analyzing services as per their requirements and their own context.Originality/valueThe SOPA ontology is capable of representing the content of a product/service as well as its related opinions, which are extracted from the customer's reviews written in a specific context. Furthermore, the SOPA-based framework facilitates the opinion based service evaluation through a large number of consumer's reviews and assists the end-users in analyzing services as per their requirements and their own context.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 563
Author(s):  
Babu Rajendiran ◽  
Jayashree Kanniappan

Nowadays, many business organizations are operating on the cloud environment in order to diminish their operating costs and to select the best service from many cloud providers. The increasing number of Cloud Services available on the market encourages the cloud consumer to be conscious in selecting the most apt Cloud Service Provider that satisfies functionality, as well as QoS parameters. Many disciplines of computer-based applications use standardized ontology to represent information in their fields that indicate the necessity of an ontology-based representation. The proposed generic model can help service consumers to identify QoS parameters interrelations in the cloud services selection ontology during run-time, and for service providers to enhance their business by interpreting the various relations. The ontology has been developed using the intended attributes of QoS from various service providers. A generic model has been developed and it is tested with the developed ontology.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 467
Author(s):  
Shih-Chih Chen ◽  
Shing-Han Li ◽  
Shih-Chi Liu ◽  
David C. Yen ◽  
Athapol Ruangkanjanases

In addition to the rapid development of global information and communications technology (ICT) and the Internet, recent rapid growth in cloud computing technology represents another important trend. Individual continuance intention towards information technology is a critical area in which information systems research can be performed. This study aims to develop an integrated model designed to explain and predict an individual’s continuance intention towards personal cloud services based on the concepts of technology readiness (TR) and the unified theory of acceptance and use of technology 2 (UTAUT2), moderated by gender, age, and experience of personal cloud services. The key results of the partial least square test largely support the proposed model’s validity and the significant impact of effort expectancy, social influence, hedonic motivation, price value, habit, and technology readiness on continuance intention towards personal cloud services. In addition to providing symmetric theoretical support with the proposed model and transforming the individual characteristics of TR into UTAUT2, this study could be used to enhance and analyze users’ adoption of personal cloud services and also increase the symmetry of the model’s explanation and prediction. The findings from this research contribute to providing practical implications and academic resources as well as improving our understanding of personal cloud service applications.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 317
Author(s):  
Chithambaramani Ramalingam ◽  
Prakash Mohan

The increasing demand for cloud computing has shifted business toward a huge demand for cloud services, which offer platform, software, and infrastructure for the day-to-day use of cloud consumers. Numerous new cloud service providers have been introduced to the market with unique features that assist service developers collaborate and migrate services among multiple cloud service providers to address the varying requirements of cloud consumers. Many interfaces and proprietary application programming interfaces (API) are available for migration and collaboration services among cloud providers, but lack standardization efforts. The target of the research work was to summarize the issues involved in semantic cloud portability and interoperability in the multi-cloud environment and define the standardization effort imminently needed for migrating and collaborating services in the multi-cloud environment.


Author(s):  
Olexander Melnikov ◽  
◽  
Konstantin Petrov ◽  
Igor Kobzev ◽  
Viktor Kosenko ◽  
...  

The article considers the development and implementation of cloud services in the work of government agencies. The classification of the choice of cloud service providers is offered, which can serve as a basis for decision making. The basics of cloud computing technology are analyzed. The COVID-19 pandemic has identified the benefits of cloud services in remote work Government agencies at all levels need to move to cloud infrastructure. Analyze the prospects of cloud computing in Ukraine as the basis of e-governance in development. This is necessary for the rapid provision of quality services, flexible, large-scale and economical technological base. The transfer of electronic information interaction in the cloud makes it possible to attract a wide range of users with relatively low material costs. Automation of processes and their transfer to the cloud environment make it possible to speed up the process of providing services, as well as provide citizens with minimal time to obtain certain information. The article also lists the risks that exist in the transition to cloud services and the shortcomings that may arise in the process of using them.


2019 ◽  
Vol 44 (4) ◽  
pp. 407-426
Author(s):  
Jedrzej Musial ◽  
Emmanuel Kieffer ◽  
Mateusz Guzek ◽  
Gregoire Danoy ◽  
Shyam S. Wagle ◽  
...  

Abstract Cloud computing has become one of the major computing paradigms. Not only the number of offered cloud services has grown exponentially but also many different providers compete and propose very similar services. This situation should eventually be beneficial for the customers, but considering that these services slightly differ functionally and non-functionally -wise (e.g., performance, reliability, security), consumers may be confused and unable to make an optimal choice. The emergence of cloud service brokers addresses these issues. A broker gathers information about services from providers and about the needs and requirements of the customers, with the final goal of finding the best match. In this paper, we formalize and study a novel problem that arises in the area of cloud brokering. In its simplest form, brokering is a trivial assignment problem, but in more complex and realistic cases this does not longer hold. The novelty of the presented problem lies in considering services which can be sold in bundles. Bundling is a common business practice, in which a set of services is sold together for the lower price than the sum of services’ prices that are included in it. This work introduces a multi-criteria optimization problem which could help customers to determine the best IT solutions according to several criteria. The Cloud Brokering with Bundles (CBB) models the different IT packages (or bundles) found on the market while minimizing (maximizing) different criteria. A proof of complexity is given for the single-objective case and experiments have been conducted with a special case of two criteria: the first one being the cost and the second is artificially generated. We also designed and developed a benchmark generator, which is based on real data gathered from 19 cloud providers. The problem is solved using an exact optimizer relying on a dichotomic search method. The results show that the dichotomic search can be successfully applied for small instances corresponding to typical cloud-brokering use cases and returns results in terms of seconds. For larger problem instances, solving times are not prohibitive, and solutions could be obtained for large, corporate clients in terms of minutes.


Author(s):  
Вячеслав Вікторович Фролов

The article is devoted to the analysis of modern approaches that ensure the security of cloud services. Since cloud computing is one of the fastest growing areas among information technology, it is extremely important to ensure the safety and reliability of processes occurring in the clouds and to secure the interaction between the client and the provider of cloud services. Given that fears about data loss and their compromise are one of the main reasons that some companies do not transfer their calculations to the clouds. The object of research and analysis of this work are cloud services, which are provided by various cloud service providers. The aim of the study of this work is to compare existing approaches that provide information security for cloud services, as well as offer a new approach based on the principle of diversity. There are many approaches that ensure their safety, using both traditional and cloud-specific. The multi-cloud approach is one of the most promising strategies for improving reliability by reserving cloud resources on the servers of various cloud service providers. It is shown that it is necessary to use diversity to ensure the reliability and safety of critical system components. The principle of diversity is to use a unique version of each resource thanks to a special combination of a cloud computing provider, the geographical location of data centers, cloud service presentation models, and cloud infrastructure deployment models. The differences between cloud providers and which combination of services are preferable to others in terms of productivity are discussed in detail. In addition, best practices for securing cloud resources are reviewed. As a result, this paper concludes that there is a problem of insufficient security and reliability of cloud computing and how to reduce threats in order to avoid a common cause failure and, as a result, loss of confidential data or system downtime using diversity of cloud services.


2012 ◽  
Vol 9 (3) ◽  
pp. 1287-1305 ◽  
Author(s):  
Carlos Pascal ◽  
Doru Panescu

One of the key design issues for distributed systems is to find proper planning and coordination mechanisms when knowledge and decision capabilities are spread along the system. This contribution refers holonic manufacturing execution systems and highlights the way a proper modeling method - Petri nets - makes evident certain problems that can appear when agents have to simultaneously treat more goals. According to holonic organization the planning phase is mainly dependent on finding an appropriate resource allocation mechanism. The type of weakness is established by means of the proposed Petri net models and further proved by simulation experiments. A solution to make the holonic scheme avoid a failure in resource allocation is mentioned, too.


Author(s):  
Vladimir Meikshan ◽  
◽  
Natalia Teslya ◽  

Benefits of using cloud technology are obvious, their application is expanding, as a result, it determines the steady growth of demand. Cloud computing has acquired particular relevance for large companies connected with Internet services, retailing, logistics that generate large volume of business and other information. The use of cloud technologies allows organizing the joint consumption of resources, solving the problems of storing and transferring significant amounts of data. Russian consumer cooperation refers to large territory distributed organizations actively forming their own digital ecosystem. The issue of data storing and processing for consumer coo-peration organizations is very relevant. At the same time, the prices of cloud service providers are significantly different and require solving the problem of minimizing the cost of storing and transferring significant amounts of data. The application of the linear programming method is considered to select the optimal data storage scheme for several cloud service providers having different technical and economic parameters of the package (maximum amount of storage, cost of allocated resources). Mathematical model includes the equation of costs for data storing and transferring and restrictions on the amount of storage, the amount of data and its safety. Software tool that allows to perform numerical calculations is selected Microsoft Excel in combination with the "search for solutions" add-on. In accordance with the mathematical model, the conditions for minimizing the amount of cloud storage costs and the necessary restrictions are established. Initial data are set for three data forming centers, storages of certain size for five cloud service providers and nominal price for information storage and transmission. Calculations of expenses are performed in several variants: without optimization, with the solution of the optimization problem, with price increase by cloud service providers. Results of the calculations confirm the necessity to solve the problem of minimizing the cost of cloud services for corporate clients. The presented model can be expanded for any cost conditions as well as for different areas of cloud applications.


Sign in / Sign up

Export Citation Format

Share Document