scholarly journals Impact of Magnetohydrodynamics on Stagnation Point Slip Flow due to Nonlinearly Propagating Sheet with Nonuniform Thermal Reservoir

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Zeeshan Khan ◽  
Haroon Ur Rasheed ◽  
Saeed Islam ◽  
Sahib Noor ◽  
Waris Khan ◽  
...  

In this analysis, we introduced heat convective aspects of stagnation point movement of a magnetohydrodynamic (MHD) stream on a nonlinear oscillating plane with the impacts of velocity and heat slips with variable heat reservoir. By using some appropriate transformations, the governing differential equations are switched into an ordinary differential equation. The semianalytics technique called Homotpy Analysis Method (HAM) has been applied to evaluate the ordinary differential equations. For convergence achievement, a numerical method BVPh2-midpoint method is also applied and an outstanding agreement is found. The impacts of the governing constraints on flow, motion, and temperature distributions are investigated in detail. We observed that the temperature distribution increases with nonlinear heat reservoir parameter. Our results, in some limiting situations, matched well with previously published results, which approve that our obtained results are correct.

2021 ◽  
Vol 10 (9) ◽  
pp. 3273-3282
Author(s):  
M.E.H. Hafidzuddin ◽  
R. Nazar ◽  
N.M. Arifin ◽  
I. Pop

The problem of steady laminar three-dimensional stagnation-point flow on a permeable stretching/shrinking sheet with second order slip flow model is studied numerically. Similarity transformation has been used to reduce the governing system of nonlinear partial differential equations into the system of ordinary (similarity) differential equations. The transformed equations are then solved numerically using the \texttt{bvp4c} function in MATLAB. Multiple solutions are found for a certain range of the governing parameters. The effects of the governing parameters on the skin friction coefficients and the velocity profiles are presented and discussed. It is found that the second order slip flow model is necessary to predict the flow characteristics accurately.


2019 ◽  
Vol 1 (2) ◽  
pp. 86-90
Author(s):  
Aminu Barde

Delay differential equation (DDEs) is a type of functional differential equation arising in numerous applications from different areas of studies, for example biology, engineering population dynamics, medicine, physics, control theory, and many others. However, determining the solution of delay differential equations has become a difficult task more especially the nonlinear type. Therefore, this work proposes a new analytical method for solving non-linear delay differential equations. The new method is combination of Natural transform and Homotopy analysis method. The approach gives solutions inform of rapid convergence series where the nonlinear terms are simply computed using He's polynomial. Some examples are given, and the results obtained indicate that the approach is efficient in solving different form of nonlinear DDEs which reduces the computational sizes and avoid round-off of errors.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Ali Demir ◽  
Mine Aylin Bayrak ◽  
Ebru Ozbilge

The motivation of this study is to construct the truncated solution of space-time fractional differential equations by the homotopy analysis method (HAM). The first space-time fractional differential equation is transformed into a space fractional differential equation or a time fractional differential equation before the HAM. Then the power series solution is constructed by the HAM. Finally, taking the illustrative examples into consideration we reach the conclusion that the HAM is applicable and powerful technique to construct the solution of space-time fractional differential equations.


2019 ◽  
Vol 8 (1) ◽  
pp. 270-282 ◽  
Author(s):  
Mahantesh M. Nandeppanavar ◽  
M. C. Kemparaju ◽  
S. Shakunthala

Abstract In this paper, we have studied the heat transfer characteristics of stagnation point flow of an MHD flow over a non-linearly moving plate with momentum and thermal slip effects in presence of non-uniform heat source/sink. The governing differential equations are transformed into the ordinary differential equations using suitable similarity transformations. These equations which are BVPs’ and are solved using a numerically by fourth order Runge-Kutta method using MAPLE computing software. The effects of governing parameters are studied on flow, velocity and heat distributions and are discussed in detail. It is observed that the non-uniform heat source parameters enhance the temperature distribution. Our results are agreed well with previously published results for some limiting conditions, which validate our present results are correct.


Author(s):  
Abdul Khaleq O. Al-Jubory ◽  
Shaymaa Hussain Salih

In this work, we employ a new normalization Bernstein basis for solving linear Freadholm of fractional integro-differential equations  nonhomogeneous  of the second type (LFFIDEs). We adopt Petrov-Galerkian method (PGM) to approximate solution of the (LFFIDEs) via normalization Bernstein basis that yields linear system. Some examples are given and their results are shown in tables and figures, the Petrov-Galerkian method (PGM) is very effective and convenient and overcome the difficulty of traditional methods. We solve this problem (LFFIDEs) by the assistance of Matlab10.   


2014 ◽  
Vol 58 (1) ◽  
pp. 183-197 ◽  
Author(s):  
John R. Graef ◽  
Johnny Henderson ◽  
Rodrica Luca ◽  
Yu Tian

AbstractFor the third-order differential equationy′″ = ƒ(t, y, y′, y″), where, questions involving ‘uniqueness implies uniqueness’, ‘uniqueness implies existence’ and ‘optimal length subintervals of (a, b) on which solutions are unique’ are studied for a class of two-point boundary-value problems.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Kusano Takaŝi ◽  
Jelena V. Manojlović

AbstractWe study the asymptotic behavior of eventually positive solutions of the second-order half-linear differential equation(p(t)\lvert x^{\prime}\rvert^{\alpha}\operatorname{sgn}x^{\prime})^{\prime}+q(% t)\lvert x\rvert^{\alpha}\operatorname{sgn}x=0,where q is a continuous function which may take both positive and negative values in any neighborhood of infinity and p is a positive continuous function satisfying one of the conditions\int_{a}^{\infty}\frac{ds}{p(s)^{1/\alpha}}=\infty\quad\text{or}\quad\int_{a}^% {\infty}\frac{ds}{p(s)^{1/\alpha}}<\infty.The asymptotic formulas for generalized regularly varying solutions are established using the Karamata theory of regular variation.


1992 ◽  
Vol 15 (3) ◽  
pp. 509-515 ◽  
Author(s):  
B. S. Lalli ◽  
B. G. Zhang

An existence criterion for nonoscillatory solution for an odd order neutral differential equation is provided. Some sufficient conditions are also given for the oscillation of solutions of somenth order equations with nonlinearity in the neutral term.


Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 174
Author(s):  
Janez Urevc ◽  
Miroslav Halilovič

In this paper, a new class of Runge–Kutta-type collocation methods for the numerical integration of ordinary differential equations (ODEs) is presented. Its derivation is based on the integral form of the differential equation. The approach enables enhancing the accuracy of the established collocation Runge–Kutta methods while retaining the same number of stages. We demonstrate that, with the proposed approach, the Gauss–Legendre and Lobatto IIIA methods can be derived and that their accuracy can be improved for the same number of method coefficients. We expressed the methods in the form of tables similar to Butcher tableaus. The performance of the new methods is investigated on some well-known stiff, oscillatory, and nonlinear ODEs from the literature.


Sign in / Sign up

Export Citation Format

Share Document