scholarly journals Test on Compaction Reinforcement Effect of Sand

2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Lianzhen Zhang ◽  
Qingsong Zhang ◽  
Zhipeng Li ◽  
Hongbo Wang

In fracture or compaction grouting projects of sand layer, there exist many compacted sand regions on both sides of grout veins or around grout bulbs. It has an important effect on the final reinforcement effect of the sand layer that how much performance of the sand layer is improved after being compacted. Compression modulus, cohesion, and permeability coefficient are selected to be the performance indexes of the compaction reinforcement effect of sand. The relationship between the performance properties of sand and grouting pressure has been tested and analyzed. And influences of clay content and initial water ratio of sand on the compaction reinforcement effect have been studied. Results show that compaction can effectively improve the mechanical properties and impermeability properties of sand. Compression modulus of sand increases by 2∼18 times. The cohesion of sand increases from the scope of 9.4∼26 kPa to the scope of 40∼113.6 kPa. The permeability coefficient of sand decreases from the scope of 1.0 × 10−2∼ 8.33 × 10−4 cm/s to the scope of 2.19 × 10−4∼2.77 × 10−9 cm/s. When the clay content of sand is smaller than about 20%, sand cannot be reinforced effectively by compaction. Cohesion cannot be improved significantly and the permeability coefficient cannot be reduced markedly. A high initial water ratio of sand is beneficial to improve the compression modulus of compacted sand and goes against the improvement of cohesion of compacted sand. In addition, the initial water ratio has little effect on the permeability coefficient of compacted sand. In the end, fitting formulas have been developed to quantitatively describe the compaction reinforcement effect of sand by different grouting pressures.

2011 ◽  
Vol 287-290 ◽  
pp. 2840-2843 ◽  
Author(s):  
Wei Ping Peng ◽  
Xiong Zhao ◽  
Zhao Liu

Based on cylindrical diffusion theory and characteristics of enriched vibrated Roller Compacted Concrete (RCC), a model of grout permeation was established. According to this model and generalized Darcy’s law, a formula was deduced, which shows the relationship among diffusion radius of grout, grouting pressure, radius of grouting pipe, construction time, viscosity of grout, permeability coefficient of RCC, porosity of RCC and rheological index of grout, computing steps by this formula were presented, and results of computing grout diffusion radius for an equipment of grouting in Roller Compacted Concrete was given, which was developed for construction of RCC dam at Tingzikou hydraulic power station.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yan-Xu Guo ◽  
Qing-Song Zhang ◽  
Lian-Zhen Zhang ◽  
Ren-Tai Liu ◽  
Xin Chen ◽  
...  

Permeation grouting is widely used in grouting engineering because of its low grouting pressure and minor disturbance to the stratum. However, influenced by the complex properties of sand layer and slurry, an accurate prediction of the groutability of the sand layer remains to be a hard work. In this paper, the permeability of sand layer is studied based on a self-designed permeation grouting test device, which considers the different sand particle size, relative density of sand layer, slurry water-cement ratio, and clay content. The influencing factors of sand layer groutability are analyzed, and the different parameters that affect the grouting of sand layer are evaluated, thus proposing a new approach to predict the groutability of sand layer. Results show that the sand particle size and slurry water-cement ratio are positively related to the groutability of sand layer, and the relative density and clay content of sand layer are negatively correlated with the groutability of sand layer. The proposed alternative empirical formula to estimate the groutability of sand layer will help predict the groutability of sand layer with a higher degree of accuracy, which can provide a certain reference for engineering.


2012 ◽  
Vol 170-173 ◽  
pp. 679-682
Author(s):  
Hua Yuan ◽  
Jian Wei Zhang ◽  
Zhi Liang Zhao

Present research results have verified the significant soil reinforcement effect of dewatering. But the reinforcement effect of dewatering suffers ignorance in current excavation design process due to lack of systematic experimental study on the strengthening mechanism, causing a certain amount of waste. This paper first theoretically describes the relationship between the increase of soil shear strength and that of compression modulus owing to pumping, then investigates the influence of well-point pumping on Shanghai soil’s shear strength and deformation properties through indoor test. The results may provide useful suggestions for future excavation support design.


Author(s):  
Gülay Karahan

Sorptivity (S) is the fundamental variable controlling the early infiltration process. Besides soil properties, soil initial water content (θi) and/or matric pressure (hi) are key factors determining extent of S. Assessment of interrelationship among S, hi and soil properties can provide a considerable insight into understanding the behaviour of dry soils to rainfall or irrigation water. This study was conducted to evaluate relationship between S and some selected soil parametric and morphometric properties within a range of hi. Sixteen undisturbed soil samples (5 cm id, 5 cm length) were taken from the topsoil (0-15 cm) of a paddy soil with clay texture. Sorptivity was measured with a mini-disc infiltrometer (MDI) on the samples equilibrated at h, ranging from -20 to -1500 kPa. A parameter (η), representing the relationship between S and hi, was introduced. Correlation analysis was conducted between η and selected soil morphometric and parametric properties. Soil structure and clay content appeared the most important soil attributes influencing S-hi relation between -200 and -1500 kPa. The results provided a fundamental understanding on S-hi-soil properties interrelations in a clay soil. The methodology developed in this study can be used to evaluate S-hi relationship across different soils and scales.


2006 ◽  
Vol 2 (1) ◽  
pp. 51-72
Author(s):  
István Patay ◽  
Virág Sándor

Clod crushing is a principal problem with soils of high clay content. Therefore, there is a need for determining the conditions for clod breaking and clod crushing. The objective of the work was to develop a special purpose tool for single clod breaking both by rigid support of the clod and by a single clod supported by soil and to develop a machine for clod crushing. Furthermore, the purpose was to determine the relationship between the specific energy requirement for clod crushing in the function of soil plasticity and the soil moisture content by the means of the developed tool and machine. The main result of the experiments is summarized in a 3D diagram where the specific energy requirement for soil clod crushing is given in the function of the moisture content and the plasticity index for different clay soils.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Zhijun Zhou ◽  
Shanshan Zhu ◽  
Xiang Kong ◽  
Jiangtao Lei ◽  
Tong Liu

The settlement calculation of postgrouting piles is complex and depends on the calculation method and parameters. Static load tests were conducted to compare the settlement characteristics of nongrouting and postgrouting piles, and three vital parameters in the layer-wise summation method were revised to predict the settlement of postgrouting piles. The elastic compression coefficient was deduced based on the Mindlin–Geddes method by considering the influence of the change in the pile side resistance distribution and end resistance ratio on the elastic compression after grouting. The relationship between the compression modulus and soil gravity stress and cone penetration resistance were established, respectively, using experimental data. The optimum value of the settlement empirical coefficient was determined using regional data. Finally, we used the postgrouting pile of the Wuqi–Dingbian expressway as a practical example. The results obtained from the layer-wise summation method after parametric optimization were close to the measured values. The results of this study provide reference data and guidance for the settlement calculation of postgrouting piles in this area.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 103-110
Author(s):  
Anfu Guo ◽  
Hui Li ◽  
Jie Xu ◽  
Jianfeng Li ◽  
Fangyi Li

AbstractThe performance of Polystyrene microporous foaming (PS-MCF) materials is influenced by their microstructures. Therefore, it is essential for industrializing them to investigate the relationship between their microstructure and material properties. In this study, the relationship between the microstructure, compressive property, and thermal conductivity of the PS-MCF materials was studied systematically. The results show that the ideal foaming pressure of PS-MCF materials, obtaining compression performance, is around 20 MPa. In addition, the increase of temperature causes the decrease of sample density. It effects that the compression modulus and strength increase with the decrease of foaming temperature. Because the expansion rate and cell diameter of the PS-MCF materials reduce the thickness of cell wall, they are also negatively correlated with their mechanical properties. Moreover, there is a negative linear correlation between the thermal conductivity and cell rate, whereas the cell diameter is positively correlated with the thermal conductivity.


2013 ◽  
Vol 353-356 ◽  
pp. 735-739
Author(s):  
Xiao Ming Zhang ◽  
Shu Wen Ding ◽  
Shuang Xi Li

Development of slope disintegration is close to soil mechanic characteristics such as shear strength indices. Soil grain diameter and water content were tested. Soil direct shear test was conducted to analyze the relationship between shear strength indices and the influencing factors. The experimental data indicate that clay content and the range affect soil cohesion value and the scope. Soil cohesion increases with bulk density before 1.6g/cm3. But it decreases when the bulk after that. The results could provide a scientific basis for control of slope disintegration.


2000 ◽  
Vol 37 (3) ◽  
pp. 712-722 ◽  
Author(s):  
A Sridharan ◽  
H B Nagaraj

Correlating engineering properties with index properties has assumed greater significance in the recent past in the field of geotechnical engineering. Although attempts have been made in the past to correlate compressibility with various index properties individually, all the properties affecting compressibility behaviour have not been considered together in any single study to examine which index property of the soil correlates best with compressibility behaviour, especially within a set of test results. In the present study, 10 soils covering a sufficiently wide range of liquid limit, plastic limit, and shrinkage limit were selected and conventional consolidation tests were carried out starting with their initial water contents almost equal to their respective liquid limits. The compressibility behaviour is vastly different for pairs of soils having nearly the same liquid limit, but different plasticity characteristics. The relationship between void ratio and consolidation pressure is more closely related to the shrinkage index (shrinkage index = liquid limit - shrinkage limit) than to the plasticity index. Wide variations are seen with the liquid limit. For the soils investigated, the compression index relates better with the shrinkage index than with the plasticity index or liquid limit.Key words: Atterberg limits, classification, clays, compressibility, laboratory tests.


Sign in / Sign up

Export Citation Format

Share Document