scholarly journals Overexpression of Ubiquitin-Specific Protease 2 (USP2) in the Heart Suppressed Pressure Overload-Induced Cardiac Remodeling

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Junhui Xing ◽  
Pengcheng Li ◽  
Jin Hong ◽  
Mengyu Wang ◽  
Yuzhou Liu ◽  
...  

Ubiquitin-specific protease 2 (USP2) is an important member of the deubiquitination system. GEO dataset revealed that USP2 was downregulated in the hearts under pressure overload. However, the cardiomyocyte-specific function of USP2 in the setting of pressure overload is unknown. In the current study, a mouse model of pressure overload was induced by transverse aortic constriction (TAC, 2 weeks). Overexpression of USP2 in the heart was conducted by AAV9 infection. Changes in heart histology were detected by Masson’s trichrome staining and hematoxylin-eosin staining (H&E). Echocardiography was used to assess cardiac function. The size of cardiomyocytes was examined by wheat germ agglutinin (WGA) staining. Cardiac oxidative stress was detected by dihydroethidine staining. Our results showed that USP2 was downregulated in the cardiomyocytes following 2 weeks of TAC. Overexpression of cardiac USP2 preserved ventricular function following 2 weeks of TAC. Overexpression of cardiac USP2 inhibited TAC-induced cardiac remodeling, by suppressing cardiac hypertrophy, inhibiting inflammatory responses and fibrosis, and attenuating oxidative stress. Our findings reveal a previously unrecognized role of USP2 in regulating pressure overload-induced cardiac remodeling.

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Shungo Hikoso ◽  
Kinya Otsu ◽  
Osamu Yamaguchi ◽  
Toshihiro Takeda ◽  
Masayuki Taniike ◽  
...  

Objectives: We have previously reported that NF-κB contributes to GPCR agonist-induced hypertrophy in cultured cardiomyocytes. However, the in vivo role of this pathway in the pathogenesis of cardiac remodeling remains to be elucidated. Although IκB kinase β (IKKβ)/NF-κB pathway is a major negative regulator of cell death, it can sensitize cells to death-inducing stimuli in some instances, thus it can be either anti- or pro-apoptotic. In this study, we aimed to clarify the role of IKKβ/NF-κB signaling in cardiac remodeling using cardiac-specific IKKβ deficient mice. Methods and Results: We crossed mice bearing an IKK β flox allele with mice expressing the Cre recombinase under the control of the myosin light chain 2v promoter ( MLC2v-Cre +/− ) to generate IKK β flox/flox ; MLC2v-Cre +/− mice (conditional knockout:CKO). Then, CKO mice (n=14) and control littermates bearing IKK β flox/flox (CTRL, n=14) were subjected to pressure overload by means of transverse aortic constriction (TAC). EMSA analysis revealed NF-κB DNA binding activity after TAC had attenuated in CKO hearts. One week after TAC, echocardiography showed significantly lower left ventricular fractional shortening (26.9±2.7% vs. 41.4±0.9%, p<0.01), and higher left ventricular end-diastolic dimension (4.02±0.14 mm vs. 3.47±0.08 mm, p<0.01) and lung weight/body weight ratio (11.1±1.4 vs. 5.5±0.1, p<0.01) in CKO mice compared with CTRL mice, indicating the development of heart failure in CKO mice. Number of apoptotic cells had increased in CKO hearts after TAC, suggesting that the enhanced apoptosis is a cause for heart failure. The expression levels of MnSOD mRNA and protein after TAC, which is one of NF-κB target genes, were significantly lower in CKO than those in CTRL mice. As a consequence, oxidative stress and JNK activation in CKO hearts after TAC had significantly increased compared with those in CTRL heart, suggesting that increased oxidative stress and enhanced JNK activity resulted in cardiomyocyte apoptosis in CKO hearts. Conclusion: These results show that IKKβ/NF-κB pathway in cardiomyocyte plays a protective role mediated through attenuation of oxidative stress and JNK activation in response to pressure overload.


2020 ◽  
Vol 9 (22) ◽  
Author(s):  
Dian‐Hong Zhang ◽  
Jie‐Lei Zhang ◽  
Zhen Huang ◽  
Lei‐Ming Wu ◽  
Zhong‐Min Wang ◽  
...  

Background Cardiac hypertrophy (CH) is a physiological response that compensates for blood pressure overload. Under pathological conditions, hypertrophy can progress to heart failure as a consequence of the disorganized growth of cardiomyocytes and cardiac tissue. USP10 (ubiquitin‐specific protease 10) is a member of the ubiquitin‐specific protease family of cysteine proteases, which are involved in viral infection, oxidative stress, lipid drop formation, and heat shock. However, the role of USP10 in CH remains largely unclear. Here, we investigated the roles of USP10 in CH. Methods and Results Cardiac‐specific USP10 knockout (USP10‐CKO) mice and USP10‐transgenic (USP10‐TG) mice were used to examined the role of USP10 in CH following aortic banding. The specific functions of USP10 were further examined in isolated cardiomyocytes. USP10 expression was increased in murine hypertrophic hearts following aortic banding and in isolated cardiomyocytes in response to hypertrophic agonist. Mice deficient in USP10 in the heart exhibited exaggerated cardiac hypertrophy and fibrosis following pressure overload stress, which resulted in worsening of cardiac contractile function. In contrast, cardiac overexpression of USP10 protected against pressure overload‐induced maladaptive CH. Mechanistically, we demonstrated that USP10 activation and interaction with Sirt6 in response to angiotensin II led to a marked increase in the ubiquitination of Sirt6 and resulted in Akt signaling downregulation and attenuation of cardiomyocyte hypertrophy. Accordingly, inactivation of USP10 reduced Sirt6 abundance and stability and diminished Sirt6‐induced downstream signaling in cardiomyocytes. Conclusions USP10 functions as a Sirt6 deubiquitinase that induces cardiac myocyte hypertrophy and triggers maladaptive CH.


Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 45
Author(s):  
Helena Beatriz Ferreira ◽  
Tânia Melo ◽  
Artur Paiva ◽  
Maria do Rosário Domingues

Rheumatoid arthritis (RA) is a highly debilitating chronic inflammatory autoimmune disease most prevalent in women. The true etiology of this disease is complex, multifactorial, and is yet to be completely elucidated. However, oxidative stress and lipid peroxidation are associated with the development and pathogenesis of RA. In this case, oxidative damage biomarkers have been found to be significantly higher in RA patients, associated with the oxidation of biomolecules and the stimulation of inflammatory responses. Lipid peroxidation is one of the major consequences of oxidative stress, with the formation of deleterious lipid hydroperoxides and electrophilic reactive lipid species. Additionally, changes in the lipoprotein profile seem to be common in RA, contributing to cardiovascular diseases and a chronic inflammatory environment. Nevertheless, changes in the lipid profile at a molecular level in RA are still poorly understood. Therefore, the goal of this review was to gather all the information regarding lipid alterations in RA analyzed by mass spectrometry. Studies on the variation of lipid profile in RA using lipidomics showed that fatty acid and phospholipid metabolisms, especially in phosphatidylcholine and phosphatidylethanolamine, are affected in this disease. These promising results could lead to the discovery of new diagnostic lipid biomarkers for early diagnosis of RA and targets for personalized medicine.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 931
Author(s):  
Anureet K. Shah ◽  
Sukhwinder K. Bhullar ◽  
Vijayan Elimban ◽  
Naranjan S. Dhalla

Although heart failure due to a wide variety of pathological stimuli including myocardial infarction, pressure overload and volume overload is associated with cardiac hypertrophy, the exact reasons for the transition of cardiac hypertrophy to heart failure are not well defined. Since circulating levels of several vasoactive hormones including catecholamines, angiotensin II, and endothelins are elevated under pathological conditions, it has been suggested that these vasoactive hormones may be involved in the development of both cardiac hypertrophy and heart failure. At initial stages of pathological stimuli, these hormones induce an increase in ventricular wall tension by acting through their respective receptor-mediated signal transduction systems and result in the development of cardiac hypertrophy. Some oxyradicals formed at initial stages are also involved in the redox-dependent activation of the hypertrophic process but these are rapidly removed by increased content of antioxidants in hypertrophied heart. In fact, cardiac hypertrophy is considered to be an adaptive process as it exhibits either normal or augmented cardiac function for maintaining cardiovascular homeostasis. However, exposure of a hypertrophied heart to elevated levels of circulating hormones due to pathological stimuli over a prolonged period results in cardiac dysfunction and development of heart failure involving a complex set of mechanisms. It has been demonstrated that different cardiovascular abnormalities such as functional hypoxia, metabolic derangements, uncoupling of mitochondrial electron transport, and inflammation produce oxidative stress in the hypertrophied failing hearts. In addition, oxidation of catecholamines by monoamine oxidase as well as NADPH oxidase activation by angiotensin II and endothelin promote the generation of oxidative stress during the prolonged period by these pathological stimuli. It is noteworthy that oxidative stress is known to activate metallomatrix proteases and degrade the extracellular matrix proteins for the induction of cardiac remodeling and heart dysfunction. Furthermore, oxidative stress has been shown to induce subcellular remodeling and Ca2+-handling abnormalities as well as loss of cardiomyocytes due to the development of apoptosis, necrosis, and fibrosis. These observations support the view that a low amount of oxyradical formation for a brief period may activate redox-sensitive mechanisms, which are associated with the development of cardiac hypertrophy. On the other hand, high levels of oxyradicals over a prolonged period may induce oxidative stress and cause Ca2+-handling defects as well as protease activation and thus play a critical role in the development of adverse cardiac remodeling and cardiac dysfunction as well as progression of heart failure.


2016 ◽  
Vol 68 (6) ◽  
pp. 441-451 ◽  
Author(s):  
Wei Li ◽  
Xiangqi Wu ◽  
Minghui Li ◽  
Zhimei Wang ◽  
Bing Li ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Sung Ryul Lee

Zinc is recognized as an essential trace metal required for human health; its deficiency is strongly associated with neuronal and immune system defects. Although zinc is a redox-inert metal, it functions as an antioxidant through the catalytic action of copper/zinc-superoxide dismutase, stabilization of membrane structure, protection of the protein sulfhydryl groups, and upregulation of the expression of metallothionein, which possesses a metal-binding capacity and also exhibits antioxidant functions. In addition, zinc suppresses anti-inflammatory responses that would otherwise augment oxidative stress. The actions of zinc are not straightforward owing to its numerous roles in biological systems. It has been shown that zinc deficiency and zinc excess cause cellular oxidative stress. To gain insights into the dual action of zinc, as either an antioxidant or a prooxidant, and the conditions under which each role is performed, the oxidative stresses that occur in zinc deficiency and zinc overload in conjunction with the intracellular regulation of free zinc are summarized. Additionally, the regulatory role of zinc in mitochondrial homeostasis and its impact on oxidative stress are briefly addressed.


Author(s):  
Zhengru Liu ◽  
Mingming Qi ◽  
Shan Tian ◽  
Qian Yang ◽  
Jian Liu ◽  
...  

Ubiquitin-specific protease 25 (USP25) plays an important role in inflammation and immunity. However, the role of USP25 in acute pancreatitis (AP) is still unclear. To evaluate the role of USP25 in AP, we conducted research on clinical AP patients, USP25wild-type(WT)/USP25 knockout (USP25−/−) mice, and pancreatic acinar cells. Our results showed that serum USP25 concentration was higher in AP patients than in healthy controls and was positively correlated with disease severity. AP patients’ serum USP25 levels after treatment were significantly lower than that at the onset of AP. Moreover, USP25 expression was upregulated in cerulein-induced AP in mice, while USP25 deficiency attenuates AP and AP-related multiple organ injury. In vivo and in vitro studies showed that USP25 exacerbates AP by promoting the release of pro-inflammatory factors and destroying tight junctions of the pancreas. We showed that USP25 aggravates AP and AP-related multiple organ injury by activating the signal transducer and activator of transcription 3 (STAT3) pathway. Targeting the action of USP25 may present a potential therapeutic option for treating AP.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Soichiro Usui ◽  
Shin-ichiro Takashima ◽  
Kenji Sakata ◽  
Masa-aki Kawashiri ◽  
Masayuki Takamura

Background: Hepatokine selenoprotein P (SeP) contributes to insulin resistance and hyperglycemia in patients with type 2 diabetes. Although clinical studies suggest the insulin resistance is an independent risk factor of heart failure and inhibition of SeP protects the heart from ischemia reperfusion injury, the role of SeP in pathogenesis of chronic heart failure is not well understood. Objective: We examined the role of SeP in the regulation of cardiac remodeling in response to pressure overload. Methods and Results: We measured serum SeP levels in 22 patients for heart failure with reduced ejection fraction (HFrEF; LVEF<50%) and 22 normal subjects. Serum levels of SeP were significantly elevated in patients with HFrEF compared to in normal subjects (3.55 ± 0.43 vs 2.98 ± 0.43, p<0.01). To examine the role of SeP in cardiac remodeling, SeP knockout (KO) and wild-type (WT) mice were subjected to pressure overload (transverse aortic constriction (TAC)) for 2 weeks. The mortality rate following TAC was significantly decreased in SeP KO mice compared to WT mice (22.5 % in KO mice (n=40) vs 52.3 % in WT mice (n=39) p<0.01). LV weight/tibial length (TL) was significantly smaller in SeP KO mice than in WT mice (6.75 ± 0.24 vs 8.33 ± 0.32, p<0.01). Lung weight/TL was significantly smaller in SeP KO than in WT mice (10.46 ± 0.44 vs 16.38 ± 1.12, p<0.05). Interestingly, hepatic expression of SeP in WT was significantly increased by TAC. To determine whether hepatic overexpression of SeP affects TAC-induced cardiac hypertrophy, a hydrodynamic injection method was used to generate mice that overexpress SeP mRNA in the liver. Hepatic overexpression of SeP in SeP KO mice lead to a significant increase in LV weight/TL and Lung weight/TL after TAC compared to that in other SeP KO mice. Conclusions: These results suggest that serum levels of SeP were elevated in patients with heart failure with reduced ejection fraction and cardiac pressure overload induced hepatic expression of SeP in mice model. Gene deletion of SeP attenuated cardiac hypertrophy and dysfunction in response to pressure overload in mice. SeP possibly plays a pivotal role in promoting cardiac remodeling through the liver-heart axis.


2019 ◽  
Vol 110 (1-2) ◽  
pp. 119-129 ◽  
Author(s):  
Antonella Sesta ◽  
Maria Francesca Cassarino ◽  
Mariarosa Terreni ◽  
Alberto G. Ambrogio ◽  
Laura Libera ◽  
...  

Background: Somatic mutations in the ubiquitin-specific protease 8 (USP8) gene have recently been shown to occur in ACTH-secreting pituitary adenomas, thus calling attention to the ubiquitin system in corticotrope adenomas. Objectives: Assess the consequences of USP8 mutations and establish the role of ubiquitin on ACTH turnover in human ACTH-secreting pituitary adenomas. Methods: USP8 mutation status was established in 126 ACTH-secreting adenomas. Differences in ACTH secretion and POMC expression from adenoma primary cultures and in microarray gene expression profiles from archival specimens were sought according to USP8 sequence. Ubiquitin/ACTH coimmunoprecipitation and incubation with MG132, a proteasome inhibitor, were performed in order to establish whether ubiquitin plays a role in POMC/ACTH degradation in corticotrope adenomas. Results: USP8 mutations were identified in 29 adenomas (23%). Adenomas presenting USP8 mutations secreted greater amounts of ACTH and expressed POMC at higher levels compared to USP wild-type specimens. USP8 mutant adenomas were also more sensitive to modulation by CRH and dexamethasone in vitro. At microarray analysis, genes associated with endosomal protein degradation and membrane components were downregulated in USP8 mutant adenomas as were AVPR1B, IL11RA, and PITX2. Inhibition of the ubiquitin-proteasome pathway increased ACTH secretion and POMC itself proved a target of ubiquitylation, independently of USP8 sequence status. Conclusions: Our study has shown that USP8 mutant ACTH-secreting adenomas present a more “typical” corticotrope phenotype and reduced expression of several genes associated with protein degradation. Further, ubiquitylation is directly involved in intracellular ACTH turnover, suggesting that the ubiquitin-proteasome system may represent a target for treatment of human ACTH-secreting adenomas.


2020 ◽  
Vol 21 (7) ◽  
pp. 2440 ◽  
Author(s):  
Alexandre Vallée ◽  
Yves Lecarpentier

Endometriosis is one of the main common gynecological disorders, which is characterized by the presence of glands and stroma outside the uterine cavity. Some findings have highlighted the main role of inflammation in endometriosis by acting on proliferation, apoptosis and angiogenesis. Oxidative stress, an imbalance between reactive oxygen species and antioxidants, could have a key role in the initiation and progression of endometriosis by resulting in inflammatory responses in the peritoneal cavity. Nevertheless, the mechanisms underlying this disease are still unclear and therapies are not currently efficient. Curcumin is a major anti-inflammatory agent. Several findings have highlighted the anti-oxidant, anti-inflammatory and anti-angiogenic properties of curcumin. The purpose of this review is to summarize the potential action of curcumin in endometriosis by acting on inflammation, oxidative stress, invasion and adhesion, apoptosis and angiogenesis.


Sign in / Sign up

Export Citation Format

Share Document