scholarly journals Geometrical Properties of Spilled Oil on Seawater Detected Using a LiDAR Sensor

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
JungHwan Moon ◽  
Minwoo Jung

We report on a small-size light detection and ranging (LiDAR) sensor, which offers the possibility of being used in the field during oil spill incidents. In the present study, we develop an algorithm that can distinguish between seawater and oil through the use of a laser at 905 nm wavelength. We investigate the ability of the sensor to detect three different oil types (light crude, bunker A, and bunker C) through experiments and analyze the differences between the types and volumes of spilled oil (1, 5, 10, 15, 20, 25, 30, 35, 40, and 50 mL). The results showed that our algorithm for detecting oil spills over seawater was successful: the LiDAR sensor was able to detect different oil types and volumes. Spilled oil area coverage ranged by more than 50% of the detected area, and the viscosity of bunker C oil reached up to 73%. In addition, the experimental oil spills were mainly formed of oil films of 1 mm and 2 mm thicknesses, which confirmed geometrical properties. Follow-up research should further investigate the characteristics of oil slick thickness measured by the LiDAR system and undertake field tests to assess the feasibility of using the LiDAR system in pollution incidents.

2021 ◽  
Vol 9 (4) ◽  
pp. 392
Author(s):  
Byoungjoon Na ◽  
Sangyoung Son ◽  
Jae-Cheon Choi

Accidental oil spills not only deteriorate biodiversity but also cause immediate threats to coastal environments. This study quantitatively investigates the initial dispersion of spilled oil using the environmental fluid dynamics code (EFDC) model, loosely coupled with an endorsed oil spill model (MEDSLIK-II) accounting for time-dependent advection, diffusion, and physiochemical weathering of the surface oil slick. Focusing on local contributing factors (i.e., construction activities) to oil dispersion, the current model is applied to likely oil spills occurring at three different phases of the Songdo LNG terminal construction on a reclaimed site in South Korea. Applied phases pose detailed ship collision scenarios generated based on a proposed construction plan of the terminal. The effects of permeable revetments, required for reclamation, on the currents were also investigated and applied in subsequent oil spill modeling. For each scenario, the simulated results showed distinct patterns in the advection, dispersion, and transformation of the oil slick. Oil absorption into the coast, which causes immense damage to the coastal communities, is found to be highly dependent on the tidal currents, volume of oil spilled, and nearby construction activities.


2012 ◽  
Vol 11 (1-2) ◽  
pp. 100
Author(s):  
C. E. Stringari ◽  
W. C. Marques ◽  
L. F. Mello ◽  
R. T. Edit

Oil spills can generate different effects in different time scales on the marine ecosystem. The numerical modeling of this process is an important tool with low computational cost which provides a powerful appliance to environmental agencies regarding the risk management. In this way, the objective of this work is evaluate the local wind influence in a hypothetical oil spill along the Southern Brazilian shelf. The numerical simulation was carried using the ECOS model (Easy Coupling Oil System), an oil spill model developed at the Universidade Federal do Rio Grande – FURG, coupled with the tridimensional hydrodynamical model TELEMAC3D (EDF, France). The hydrodynamic model provides the velocities, salinity and temperature fields used by the oil spill model to evaluate the behavior and fate of the oil. The results suggest that the local wind influence are the main forcing driven the fate of the spilled oil. The direction and intensity of the currents are important controlling the behavior and the tridimensional transportation of the oil, on the other hand, the turbulent diffusion is important for the horizontal drift of the oil. The weathering results indicate 40% of evaporation and 80% of emulsification, and the combination of these processes leads an increasing of the oil density around 53.4 kg/m³ after 5 days of simulation.


2020 ◽  
Vol 32 (4) ◽  
pp. 412-438
Author(s):  
TERESA SABOL SPEZIO

AbstractIn the face of technology failures in preventing oil from reaching beaches and coasts after catastrophic oil spills in the 1960s and early 1970s, the oil industry and governmental officials needed to quickly reconsider their idea of prevention. Initially, prevention meant stopping spilled oil from coating beaches and coasts. Exploring the presentations at three oil-spill conferences in 1969, 1971 and 1973, this idea of prevention changed as the technological optimism of finding effective methods met the realities of oil-spill cleanup. By 1973, prevention meant stopping oil spills before they happened. This rapid policy transformation came about because the oil industry could not hide the visual evidence of the source of their technology failures. In this century, as policymakers confront invisible pollutants such as pesticides and greenhouse gases, considering ways to visually show the source of the pollution along with the effects could quicken policy decisions.


1991 ◽  
Vol 1991 (1) ◽  
pp. 673-676
Author(s):  
Edward Tennyson

ABSTRACT Recent large oil spills from tankers have reaffirmed the need for continuing technology assessment and research to improve oil-spill response capabilities. The Minerals Management Service (MMS) remains a lead agency in conducting these studies. This paper discusses MMS concerns, as reinforced by the acceleration of its research program in 1990. It briefly assesses the current state-of-the-art technology for major aspects of spill response, including remote sensing, open-ocean containment, recovery, in-situ burning, chemical treating agents, beach-line cleanup, and oil behavior. The paper reports on specific research projects that have begun to yield information that will improve detection and at-sea equipment performance. The first detection project, for which MMS has patent pending, involves the use of shipboard navigational radar to track slicks at relatively long range. The second project involves the use of conventional containment and cleanup in a downwind mode, which is contrary to the traditional procedures. The paper also discusses current research projects, including the development of an airborne, laser-assisted fluorosensor that can determine whether apparent slicks contain oil. Additional projects involve the development of improved strategies for responding to oil in broken-ice conditions, for gaining an improved understanding of the fate and behavior of spilled oil as it affects response strategies, and for reopening and operating the oil and hazardous materials simulated environmental test tank (OHMSETT) facility in Leonardo, New Jersey. Recent progress on the development of safe and environmentally acceptable strategies to burn spilled oil in-situ is also discussed. The OHMSETT facility is necessary for testing prospective improvements in chemical treating agents and to develop standard procedures for testing and evaluating response equipment.


1973 ◽  
Vol 1973 (1) ◽  
pp. 531-540 ◽  
Author(s):  
Joel Premack ◽  
George A. Brown

ABSTRACT In the development of meaningful oil spill contingency plans, it is of great value in establishing the response to a spill emergency to have predictions of oil slick motions once the spill occurs. In an attempt to evaluate some of the present technical literature on oil spill motion, a calculation was made for the oil spill motion which occurred in Narragansett Bay in September, 1960 when the tanker P.W. Thirtle ran aground and emitted about 24,000 barrels of Bunker C oil over a 12 hour period before successful abatement of the source was completed. The existing literature on oil slick spreading was reviewed and the work of Fay was chosen to represent the slick's spreading characteristics. The existing literature on oil slick drift was reviewed and the work of Teason, et. al, was used to establish the drift motion under the influence of current and wind actions. An available numerical hydrodynamic model of Narragansett Bay was used to calculate the current characteristics in the vicinity of the spills during the period of interest. Appropriate wind data were combined with the current data in order to obtain the important hydrodynamic and meteorological conditions. Since no comprehensive theory exists at the moment for oil slick spreading and drift, a simple model was taken in which the 24,000 barrels were emitted from the source in the form of 12 hourly discharges of 2000 barrels each. These individual spills were then handled on the basis of the available spreading theory and the drift motion calculated as described above. Although this is a crude approximation, it does give an estimate of the location and area magnitude of the spreading as a function of time after the spill. The predicted results were compared with documentation of this spill as presented in the Providence Journal. The overall slick motion as calculated by this procedure was in good agreement with arrival times of the spill in Newport Harbor and other places in Narragansett Bay and with the overall surface area involved in the spill. This example of the calculation of the oil slick motion in an estuary at least gives some confidence to oil spill contingency planners that numerical calculations can be made for use in planning response and abatement to oil spills.


2001 ◽  
Vol 2001 (2) ◽  
pp. 975-981 ◽  
Author(s):  
Paula Jokuty

ABSTRACT When an oil spill occurs, there is an immediate need on the part of spill responders to know the properties of the spilled oil, as these will affect the behavior, fate, and effects of the oil, which will in turn affect the choice of countermeasures. However, it is often difficult or impossible to obtain a sample of the spilled oil, let alone the specialized analysis required to determine its properties, in a manner timely enough to suit the circumstances of an oil spill. Under the scrutiny of the media and the public, answers regarding the identity and predicted behavior of the spilled oil will be expected immediately, if not sooner. In preparation for such emergencies, the Emergencies Science Division (ESD) of Environment Canada has been collecting properties data for crude oils and oil products since 1984. Basic physical properties—density, viscosity, pour point, etc.—and environmentally relevant characteristics—evaporation rates, emulsion formation, chemical dispersibility—are measured. Properties related to health and safety—flash point, volatile organic compounds, sulfur—also are determined. In fact, nearly 20 different types of measurements are made for both fresh and weathered crude oils and oil products. To date data has been collected for more than 400 oils. For ease of access, this information is stored in an electronic database. The database in turn is accessible via the World Wide Web, and is also periodically printed in an easy-to-read catalogue format. The wide variety of data collected in the database also makes it possible to examine both simple and complex relationships that may exist between oil properties and spill behavior. This presentation will review the full scope of information determined and collected by ESD. Using tables and graphs, examples will be presented of the many ways in which this information can be viewed and used by both laymen and experts in the field of oil spills.


2017 ◽  
Vol 2017 (1) ◽  
pp. 2219-2236
Author(s):  
Per Johan Brandvik ◽  
Turid Buvik

ABSTRACT The main objective of this project has been to train dogs to find oil spills hidden in snow or ice. Previous tests performed during 2007 in a laboratory environment in Trondheim showed that dogs are able to detect and identify the smell of oil, both weathered crude and bunker fuels. Outdoor tests in the Trondheim area in Norway (63°N) have also shown that dogs detect the smell of oil and can find point sources of oil at an outdoor temperature down to −5°C. This was confirmed in phase I of this project. Realistic field tests conducted in 2008 on Svalbard (78°N) confirmed that dogs can be used to detect oil spills covered with snow and ice in Arctic environments. The dogs were able to locate single point sources and determine the approximate dimensions of a larger oil spill. The dogs also verified the bearing to a larger oil spill (400 liters, covered in snow) in increasing downwind distances up to 5 km from the oil spill. This fieldwork on Svalbard has shown that the search dog teams perform well under very harsh Arctic conditions. The dogs and the handlers were able to work in temperatures below −20° C for multiple days. The dogs also managed to keep their full concentration and operative sensitivity for several days even after being transported, first by large aircraft (3 hours), then by small aircraft (0.5 hour) and finally the search site in cages strapped on snow scooter sledges. The use of snow scooters for transporting the dogs made it possible to reach remote areas, arriving with rested dogs ready for action. This study has showed that specially trained dogs are a sensitive and effective tool to search large snow and ice covered areas to detect possible oil spills.


2017 ◽  
Vol 2017 (1) ◽  
pp. 2017-076
Author(s):  
Changwoo Nam ◽  
Houxiang Li ◽  
T.C. Mike Chung

ABSTRACT 2017-076 In this paper, we discuss a new class of i-PetroGel oil-superabsorbent technology that has shown a potential solution to the oil spill recovery and cleanup in arctic environments, based on the laboratory tests at Penn State and an open tank test at Ohmsett. This i-PetroGel material is formed by polyolefin polymers that are petroleum downstream products with similar oleophilic and hydrophobic properties of oil molecules. Apart from many oil sorbents based on adsorption, i-PetroGel absorbs oil by absorption (similar to Hydrogel absorbing aqueous solutions) and swells to a large volume. During Ohmsett testing, i-PetroGel flakes spread on top of the affected area showed effective transformation of Alaska North Slope (ANS) oil into a floating gel on the seawater surface, which was effectively recovered by an oleophilic drum skimmer and pumped to a storage tank. The recovered ANS oil-swelled adducts, containing <0.1 wt% water, exhibit similar distillation characteristics as the original ANS oil. Overall, this i-PetroGel technology could potentially provide a comprehensive solution for combating oil spills, with the goal to dramatically reduce the environmental impacts from oil spills and help recover one of the most precious natural resources. i-PetroGel exhibits a combination of desirable properties. ✓ High oil absorption capacity about 35–40 times by weight at 3 and 25 °C. ✓ Suitable to a broad range of hydrocarbons, including complex crude oils, refined oil products (gasolines, diesels, heating oils, etc.), and solvents (toluene, benzene, etc.). ✓ Fast kinetics in capturing the spilled oil. ✓ No detectable water absorption in i-PetroGel. ✓ The resulting oil/i-PetroGel adducts floating on water surface are recovered by skimmer. ✓ The recovered oil/i-Petrogel adducts can be refined as crude oil through standard refining processes. ✓ Cost effective. ✓ No secondary pollution.


1997 ◽  
Vol 1997 (1) ◽  
pp. 1029-1030 ◽  
Author(s):  
Gordon A. Robilliard ◽  
Paul D. Boehm ◽  
Michael J. Amman

ABSTRACT The purpose of the guidance manual is to identify for first responders the basic methods for collecting, preserving, and documenting essential ephemeral samples and data that are needed for NRDA and general environmental assessment in oil spills. The manual assumes that first responders will have limited specialized experience, expertise, and equipment in environmental sampling. Ephemeral data and samples include (a) source oil and freshly spilled oil, (b) the spatial distribution and amount of oil on the water surface and on shorelines, (c) unoiled beach sediments, (d) oil in the water column in unoiled and oiled areas, and (e) selected unoiled intertidal organisms. The manual provides guidance on where, when, and how to collect each type of sample and data. The manual emphasizes the importance of documenting samples and data so that they can be used later to evaluate the environmental impacts of the spilled oil.


2021 ◽  
Vol 14 (1) ◽  
pp. 157
Author(s):  
Zongchen Jiang ◽  
Jie Zhang ◽  
Yi Ma ◽  
Xingpeng Mao

Marine oil spills can damage marine ecosystems, economic development, and human health. It is important to accurately identify the type of oil spills and detect the thickness of oil films on the sea surface to obtain the amount of oil spill for on-site emergency responses and scientific decision-making. Optical remote sensing is an important method for marine oil-spill detection and identification. In this study, hyperspectral images of five types of oil spills were obtained using unmanned aerial vehicles (UAV). To address the poor spectral separability between different types of light oils and weak spectral differences in heavy oils with different thicknesses, we propose the adaptive long-term moment estimation (ALTME) optimizer, which cumulatively learns the spectral characteristics and then builds a marine oil-spill detection model based on a one-dimensional convolutional neural network. The results of the detection experiment show that the ALTME optimizer can store in memory multiple batches of long-term oil-spill spectral information, accurately identify the type of oil spills, and detect different thicknesses of oil films. The overall detection accuracy is larger than 98.09%, and the Kappa coefficient is larger than 0.970. The F1-score for the recognition of light-oil types is larger than 0.971, and the F1-score for detecting films of heavy oils with different film thicknesses is larger than 0.980. The proposed optimizer also performs well on a public hyperspectral dataset. We further carried out a feasibility study on oil-spill detection using UAV thermal infrared remote sensing technology, and the results show its potential for oil-spill detection in strong sunlight.


Sign in / Sign up

Export Citation Format

Share Document