Prediction of Oil Slick Motions in Narragansett Bay

1973 ◽  
Vol 1973 (1) ◽  
pp. 531-540 ◽  
Author(s):  
Joel Premack ◽  
George A. Brown

ABSTRACT In the development of meaningful oil spill contingency plans, it is of great value in establishing the response to a spill emergency to have predictions of oil slick motions once the spill occurs. In an attempt to evaluate some of the present technical literature on oil spill motion, a calculation was made for the oil spill motion which occurred in Narragansett Bay in September, 1960 when the tanker P.W. Thirtle ran aground and emitted about 24,000 barrels of Bunker C oil over a 12 hour period before successful abatement of the source was completed. The existing literature on oil slick spreading was reviewed and the work of Fay was chosen to represent the slick's spreading characteristics. The existing literature on oil slick drift was reviewed and the work of Teason, et. al, was used to establish the drift motion under the influence of current and wind actions. An available numerical hydrodynamic model of Narragansett Bay was used to calculate the current characteristics in the vicinity of the spills during the period of interest. Appropriate wind data were combined with the current data in order to obtain the important hydrodynamic and meteorological conditions. Since no comprehensive theory exists at the moment for oil slick spreading and drift, a simple model was taken in which the 24,000 barrels were emitted from the source in the form of 12 hourly discharges of 2000 barrels each. These individual spills were then handled on the basis of the available spreading theory and the drift motion calculated as described above. Although this is a crude approximation, it does give an estimate of the location and area magnitude of the spreading as a function of time after the spill. The predicted results were compared with documentation of this spill as presented in the Providence Journal. The overall slick motion as calculated by this procedure was in good agreement with arrival times of the spill in Newport Harbor and other places in Narragansett Bay and with the overall surface area involved in the spill. This example of the calculation of the oil slick motion in an estuary at least gives some confidence to oil spill contingency planners that numerical calculations can be made for use in planning response and abatement to oil spills.

1977 ◽  
Vol 1977 (1) ◽  
pp. 309-311
Author(s):  
L. A. Schultz

ABSTRACT The increased interest in, and development of, arctic petroleum resources has increased correspondingly the potential for oil spills in cold regions. A recently completed survey of cold regions oil spill mitigation technology included a cursory determination of the applicability of presently available means to the problems of detection, containment, recovery, temporary storage, and disposal of oil spilled in cold regions. For purposes of the study, cold regions were characterized by the existence of low temperatures and the presence of ice in its many forms. The evaluations were based upon the experience of the authors in conducting other cold regions laboratory and field programs, and the experiences of others in cold regions as reported in the technical literature. This survey revealed that, while a very limited degree of oil spill response capability is available for use in cold regions based upon using the techniques and equipment currently employed in warmer climates, a great deal of development work must be undertaken before a total cold regions oil spill response capability will be available. Current technology falls far short of the desired capability in all functional areas including remote sensing, containment, recovery, temporary storage, and disposal.


2001 ◽  
Vol 2001 (2) ◽  
pp. 873-881 ◽  
Author(s):  
Deborah P. French McCay ◽  
Mark A. Jones ◽  
Louis Coakley

ABSTRACT Important questions that are asked by spill responders as well as those assessing potential impacts are: (I) What is the probability of oiling, above a threshold of concern, for each location near a potential spill site? (2) How soon will oil reach each site of concern? (3) How much oil contamination is expected (on average and worst case)? (4) Is there a potential for impacting biological resources with this oil? Using Applied Science Associates, Inc.'s (ASA) oil spill model (Spill Impact Assessment Package, SIMAP) in stochastic mode, these questions were evaluated for Florida Power & Light (FPL) for a variety of oil types and spill volumes, and for each of FPL's plants and terminals. The model was run many times, randomizing the start time over decade-long wind records. The model evaluates surface oil, shoreline oil, subsurface oil, and low molecular weight aromatics (the most toxic fraction of the oil). Both the mean and worst case exposure thickness/concentration are evaluated. The output includes contour maps, which may be interrogated (with the user interface) to determine the conditions under which worst case oiling occurs. The contours are overlaid on resource maps, showing where resources are most at risk and where protection would be most beneficial. FPL uses SIMAP for contingency planning, drills, spill response, and evaluation of fates and impacts of spills. ASA has developed databases for use in the model for the locations around each of FPL's plants and terminals. These data include shore and habitat type mapping, locations of sensitive resources, and current data sets generated by ASA's hydrodynamic model. The stochastic model may be used as a contingency planning tool or as a component of the ecological risk assessment process. It determines the range of distances and directions oil spills are likely to travel from a particular site, given wind and current data for the area. Practical uses for this information include the determination of which kinds of response equipment should be used in a particular area and where the equipment should be placed to be most effective, what areas are most at risk from possible spills at a specific location, and the expected magnitude of impacts.


2021 ◽  
Vol 9 (4) ◽  
pp. 392
Author(s):  
Byoungjoon Na ◽  
Sangyoung Son ◽  
Jae-Cheon Choi

Accidental oil spills not only deteriorate biodiversity but also cause immediate threats to coastal environments. This study quantitatively investigates the initial dispersion of spilled oil using the environmental fluid dynamics code (EFDC) model, loosely coupled with an endorsed oil spill model (MEDSLIK-II) accounting for time-dependent advection, diffusion, and physiochemical weathering of the surface oil slick. Focusing on local contributing factors (i.e., construction activities) to oil dispersion, the current model is applied to likely oil spills occurring at three different phases of the Songdo LNG terminal construction on a reclaimed site in South Korea. Applied phases pose detailed ship collision scenarios generated based on a proposed construction plan of the terminal. The effects of permeable revetments, required for reclamation, on the currents were also investigated and applied in subsequent oil spill modeling. For each scenario, the simulated results showed distinct patterns in the advection, dispersion, and transformation of the oil slick. Oil absorption into the coast, which causes immense damage to the coastal communities, is found to be highly dependent on the tidal currents, volume of oil spilled, and nearby construction activities.


2021 ◽  
Vol 9 (9) ◽  
pp. 1034
Author(s):  
Chijioke D. Eke ◽  
Babatunde Anifowose ◽  
Marco J. Van De Wiel ◽  
Damian Lawler ◽  
Michiel A. F. Knaapen

Oil spills in estuaries are less studied and less understood than their oceanic counterparts. To address this gap, we present a detailed analysis of estuarine oil spill transport. We develop and analyse a range of simulations for the Humber Estuary, using a coupled hydrodynamic and oil spill model. The models were driven by river discharge at the river boundaries and tidal height data at the offshore boundary. Satisfactory model performance was obtained for both model calibration and validation. Some novel findings were made: (a) there is a statistically significant (p < 0.05) difference in the influence of hydrodynamic conditions (tidal range, stage and river discharge) on oil slick transport; and (b) because of seasonal variation in river discharge, winter slicks released at high water did not exhibit any upstream displacement over repeated tidal cycles, while summer slicks travelled upstream into the estuary over repeated tidal cycles. The implications of these findings for operational oil spill response are: (i) the need to take cognisance of time of oil release within a tidal cycle; and (ii) the need to understand how the interaction of river discharge and tidal range influences oil slick dynamics, as this will aid responders in assessing the likely oil trajectories.


2020 ◽  
Vol 77 (5) ◽  
pp. 779-788 ◽  
Author(s):  
Jeffrey Cederwall ◽  
Tyler A. Black ◽  
Jules M. Blais ◽  
Mark L. Hanson ◽  
Bruce P. Hollebone ◽  
...  

Heavy crude oil transportation over land is increasing, yet the ecological impacts of spills, particularly of diluted bitumen, in freshwater environments remain poorly understood. We simulated spills of diluted bitumen in 1400 L land-based mesocosms containing water and sediments from a boreal, oligotrophic lake and monitored the response of natural planktonic communities over 11 days. Most species of phytoplankton (chrysophytes and dinoflagellates) and zooplankton (copepods and cladocerans) were sensitive to oil, exhibiting >70% overall abundance reductions in response to the spills. Declines in nano- and microphytoplankton were short-lived and began to recover after the oil sank, whereas picophytoplankton and zooplankton populations remained depressed at the end of the experiment. In contrast, oil spills stimulated bacteria known to degrade hydrocarbons, especially Alphaproteobacteria, whereas Gammaprotobacteria (a common marine oil spill bacterial class) increased less. This is the first experiment to examine the effects of diluted bitumen in a multitrophic freshwater community.


Author(s):  
Chijioke D. Eke ◽  
Babatunde Anifowose ◽  
Marco Van De Wiel ◽  
Damian Lawler ◽  
Michiel Knaapen

ABSTRACT Crude oil is predicted to become one of the most detrimental sources of anthropogenic pollution to estuaries. A comprehensive survey of oil spill literature reveals that oil spill transport in estuaries presents a gap in academic knowledge and literature. To address this gap, we present the first detailed analysis of estuarine oil spill dynamics. We develop and analyse a range of simulations for the Humber Estuary, using TELEMAC3D; a coupled hydrodynamic and oil spill models. The river boundary of the Humber Estuary is forced by discharge data, while the offshore boundary is driven by tidal height data, including estuarine water temperature and salinity. The calibrated model shows good agreement with measured data during the validation process. Results show that: (a) the time of oil release within a tidal cycle significantly influences oil slick transport; and (b) the tidal range significantly influences oil slick impacted area and overall distance travelled, as oil slick released under spring tide is approximately double the oil slick size under neap tides and travels on average 71% farther. This study emphasises the need to: a) understand how the interaction of river discharge and tidal range influences oil slick transport; and (b) be aware of the time of release within a tidal cycle, to efficiently deal with oil spills. Findings should be useful for future operational oil spill response and could be equally applicable to other tide-dominated estuaries.


Author(s):  
S. Hari Priya ◽  
P. V. Jayasri ◽  
E. V. S Sita Kumari ◽  
A. V. V. Prasad

<p><strong>Abstract.</strong> Oil spills in oceans have a significant long term effect on the marine ecosystem and are of prime concern for maritime economy. In order to locate and estimate the oil spread area and for quantitative damage assessment, it is required to continually monitor the affected area on the sea and its surroundings and space based remote sensing makes this technically viable. Synthetic Aperture Radar SAR with its high sensitivity to target dielectric constant, look angle and polarization-dependent target backscatter has become a potential tool for oil-spill observation and maritime monitoring. From conventional single-channel SAR (single-pol, HH or VV) to multi-channel SAR – (Dual/Quad-polarization) and more recently compact polarimetric (Hybrid/Slant Linear) SAR systems have been widely used for oil-spill detection in the seas. Various polarimetric features have been proposed to classify oil spills using full, dual and compact polarimetric SAR. RISAT-1 is a C-band SAR with Circular Transmit and Linear Receive (CTLR) hybrid polarimetric imaging capability.This study is aimed at the polarimetric processing of RISAT-1 hybrid pol single look complex (SLC) data for derivation of the decisive polarimetric parameters which can be used to identify oil spills in oceans and their discrimination from look-alike signatures. In order to understand ocean–oil spill signatures from full-quad pol SAR, pseudo-quad pol covariance matrix is constructed from RISAT-1 hybrid pol using polarimetric scattering models .Then polarimetric processing is carried out over pseudo-quad pol data for oil slick detection. In-house developed software is used for carrying out the above oil-spill study.</p>


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
JungHwan Moon ◽  
Minwoo Jung

We report on a small-size light detection and ranging (LiDAR) sensor, which offers the possibility of being used in the field during oil spill incidents. In the present study, we develop an algorithm that can distinguish between seawater and oil through the use of a laser at 905 nm wavelength. We investigate the ability of the sensor to detect three different oil types (light crude, bunker A, and bunker C) through experiments and analyze the differences between the types and volumes of spilled oil (1, 5, 10, 15, 20, 25, 30, 35, 40, and 50 mL). The results showed that our algorithm for detecting oil spills over seawater was successful: the LiDAR sensor was able to detect different oil types and volumes. Spilled oil area coverage ranged by more than 50% of the detected area, and the viscosity of bunker C oil reached up to 73%. In addition, the experimental oil spills were mainly formed of oil films of 1 mm and 2 mm thicknesses, which confirmed geometrical properties. Follow-up research should further investigate the characteristics of oil slick thickness measured by the LiDAR system and undertake field tests to assess the feasibility of using the LiDAR system in pollution incidents.


2014 ◽  
Vol 16 (4) ◽  
pp. 743-752 ◽  

<div> <p>The objective of this study is to present an integrated stochastic approach for quantifying the risk of oil spill in marine waters and adjacent coasts. This was achieved via the effective cooperation between the National Technical University of Athens (NTUA) and the Bogazici University (BU) within the framework of a bilateral joint research project. The proposed methodology integrates four models: (1) a physics-based hydrodynamic model (HYM) which computes the spatial distribution of surface water currents as the main driving force for oil transport, (2) an expert-based accident assessment model (<st1:stockticker w:st="on">AAM</st1:stockticker>) to compute the frequency, location and characteristics of expected oil spills, (3) a physics-based oil spill model (<st1:stockticker w:st="on">OSM</st1:stockticker>) which computes the propagation and fate of the oil slick, and (4) an expert-based impact assessment model (IAM) to compute the distribution of coastal impact due to oil contamination. The model is applied to two pilot areas: the Saronicos Gulf, Greece and Izmir Bay, Turkey. The flow fields in these areas were determined by the HYM for a large number of wind scenarios, based on which the transport and weathering of an oil slick were computed by the <st1:stockticker w:st="on">OSM</st1:stockticker>. The most probable oil spill locations were identified by <st1:stockticker w:st="on">AAM</st1:stockticker> based on the bathymetry, the maritime traffic and the currents. Finally, the IAM was applied to draw Coastal Oil Impact Maps in the regions of interest. Emphasis was placed on the presentation of the risk of oil reaching the coastline. Environmental sensitivity and economic importance were taken into account by assigning index values to all coastal cells.&nbsp;</p> </div> <p>&nbsp;</p>


1977 ◽  
Vol 1977 (1) ◽  
pp. 455-460
Author(s):  
G. L. Hufford ◽  
I. M. Lissauer ◽  
B.D. Thompson

ABSTRACT A storm model is developed and applied to the north Alaskan coast. The model is used to generate wind fields from various storms which have occurred during the past 20 years. The wind fields generated are used to study the wind drift trajectories of oil spills from five different sites along the north Alaskan coast. The probability of an oil slick impacting the shoreline from the five different sites is discussed for different storms. Environmental risk analysis is discussed for drilling sites at different distances from the shoreline.


Sign in / Sign up

Export Citation Format

Share Document