scholarly journals Nonlinear Dynamics and Power Generation on a New Bistable Piezoelectric-Electromagnetic Energy Harvester

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-29
Author(s):  
Minghui Yao ◽  
Pengfei Liu ◽  
Hongbo Wang

This paper focuses power generation and nonlinear dynamic behaviors on a new bistable piezoelectric-electromagnetic energy harvester. Three different kinds of piezoelectric cantilever beam structures, which include the monostable piezoelectric cantilever beam, the bistable piezoelectric cantilever beam with spring and magnet, and the bistable piezoelectric cantilever beam with spring, magnet, and coil, are designed. The power generation efficiency and dynamic behaviors for each structure are experimentally studied, respectively. Due to the spring introduced, the system easily goes through the potential barrier. Experimental results show that the power generation structure of the bistable piezoelectric-electromagnetic harvester can vibrate between two steady states in a wider range of the frequency. Therefore, the effective frequency bandwidth is broadened about 2 Hz when the spring is introduced under the condition of the suitable magnetic distance. Comparing with the power generation efficiency for three different kinds of structures, it is found that the bistable piezoelectric-electromagnetic harvester has the optimum characteristics, which include the optimal magnetic distance of 15 mm, the optimal load of 8 MΩ, and the parameters variation law of coils. For this structure, the influences of the external excitation and the magnetic distance on the output voltage and dynamic behaviors of the system are examined.

Author(s):  
Ming Hui Yao ◽  
Peng Fei Liu ◽  
Wei Zhang ◽  
Dong Xing Cao

This paper presents an experimental investigation on the bistable piezoelectric electromagnetic combined energy harvester based on vibration. The end of the piezoelectric cantilever beam has a tip magnet. The opposite of the piezoelectric cantilever beam has a coil, a spring and a magnet. The power generation efficiency and dynamic behaviors for three different kinds of the piezoelectric cantilever beam structures are experimentally studied, such as the conventional piezoelectric cantilever beam, the bistable piezoelectric cantilever beam introduced spring and magnet, and the bistable piezoelectric cantilever beam introduced spring, magnet and coil. Experimental results show that the introduction of the spring and magnet improves the maximum output voltage and broaden the effective frequency bandwidth. The power generation efficiency of the system is improved by adding the coil. Complicated nonlinear dynamic behaviors occur in the system, when the spring and the magnet are introduced. These nonlinear dynamic behaviors broaden the effective frequency bandwidth.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1505
Author(s):  
Sungryong Bae ◽  
Pilkee Kim

In this study, a semi-analytic approach to optimizing the external load resistance of a bi-stable electromagnetic energy harvester is presented based on the harmonic balance method. The harmonic balance analyses for the primary harmonic (period-1T) and two subharmonic (period-3T and 5T) interwell motions of the energy harvester are performed with the Fourier series solutions of the individual motions determined by spectral analyses. For each motion, an optimization problem for maximizing the output power of the energy harvester is formulated based on the harmonic balance solutions and then solved to estimate the optimal external load resistance. The results of a parametric study show that the optimal load resistance significantly depends on the inductive reactance and internal resistance of a solenoid coil––the higher the oscillation frequency of an interwell motion (or the larger the inductance of the coil) is, the larger the optimal load resistance. In particular, when the frequency of the ambient vibration source is relatively high, the non-linear dynamic characteristics of an interwell motion should be considered in the optimization process of the electromagnetic energy harvester. Compared with conventional resistance-matching techniques, the proposed semi-analytic approach could provide a more accurate estimation of the external load resistance.


2019 ◽  
Vol 83 (sp1) ◽  
pp. 976
Author(s):  
Ming Liu ◽  
Hengxu Liu ◽  
Hailong Chen ◽  
Yuanchao Chai ◽  
Liquan Wang

Author(s):  
Muhammad Masood Ahmad ◽  
Farid Ullah Khan

This paper presents an electromagnetic energy harvester to extract low frequency and low acceleration vibration energy available in a bridge environment. The developed harvester is a multi-mode oscillator with dual electromagnetic transduction mechanisms. The harvester consists of two cantilever beams. The first cantilever beam is split into two equal pieces along its length and the second beam placed in between them coming back to the fixed end and attached at outer end to the first beam. This way instead of a long conventional cantilever beam a compact harvester is fabricated. Two magnets as proof masses are attached to each free end of the beam making it a two degree of freedom system (2-DOF). The magnets are positioned to oscillate inside hand wound coils during operation. An analytical model was developed and COMSOL multiphysics was used to simulate the mode shapes of the harvester. The mathematical model was simulated for open circuit voltage in MATLAB and showed closely matching results with the experimental values. The harvester is characterized in lab for its performance under sinusoidal vibrations at low frequency (3 Hz–15 Hz) and low acceleration (0.01–0.09 g) levels. The 2-DOF harvester has two resonant frequencies of 4.4 Hz and 5.5 Hz and a volume of 333 cm3. It produces maximum voltage of 0.6 V at first resonance on coil-1 and maximum voltage of 1.2 V on coil-2 at second resonance at 0.09 g. At acceleration of 0.09 g the harvester produced 2.51 mW at first resonant frequency and 10.7 mW at second resonance. Moreover, the AC output voltage of the harvester is rectified to DC voltage by a three-stage Cockcroft-Walton multiplier type circuit. The DC power output at 0.05 g was 0.939 mW at first resonance and 0.956 mW at second resonance while maximum voltages of 5.4 V on coil-1 and 4 V on coil-2 were produced.


Author(s):  
Ming Hui Yao

Abstract This paper presents a bistable inverted L-shaped piezoelectric beam power generation structure, and its dynamic behaviors and power generation performance are studied by positive and reverse sweep waveform experiments. The piezoelectric beam includes the substructure layer and the piezoelectric layer. The material of the piezoelectric layer is the piezoelectric ceramic transducer (PZT), and the material of the substructure layer is the phosphor brass. The positive and reverse sinusoidal excitation signal is selected. The snap through phenomenon and stiffness characteristic of the system are investigated by experimental results of the positive and reverse sweep waveform. The relationship between dynamic behaviors and electrical behaviors of the system is also studied. Experimental results show that the positive and reverse sweep waveform has a great influence on vibration of the nonlinear system. Due to the hard spring characteristic of the system, the large vibration amplitude is easy to appear in the positive sweep waveform. Dynamic behaviors of the piezoelectric system are related to its electrical behaviors. When dynamic behaviors bifurcate, electrical behaviors bifurcate. These results can be applied to explore the vibration characteristic and the power generation of the nonlinear piezoelectric system.


2021 ◽  
Vol 245 ◽  
pp. 114559
Author(s):  
Yee Yan Lim ◽  
Ricardo Vasquez Padilla ◽  
Andreas Unger ◽  
Rodrigo Barraza ◽  
Ahmed Mostafa Thabet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document