scholarly journals Elucidation of the Mechanisms and Molecular Targets of Sanhuang Xiexin Decoction for Type 2 Diabetes Mellitus Based on Network Pharmacology

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Manman Xu ◽  
Zhonghao Li ◽  
Lu Yang ◽  
Wujianwen Zhai ◽  
Nina Wei ◽  
...  

Sanhuang Xiexin Decoction (SXD) is commonly used to treat type 2 diabetes mellitus (T2DM) in clinical practice of traditional Chinese medicine (TCM). In order to elucidate the specific analysis mechanisms of SXD for T2DM, the method of network pharmacology was applied to this article. First, the effective ingredients of SXD were obtained and their targets were identified based on the TCMSP database. The T2DM-related targets screened from the GEO database were also collected by comparing the differential expressed genes between T2DM patients and healthy individuals. Then, the common targets in SXD-treated T2DM were obtained by intersecting the putative targets of SXD and the differential expressed genes of T2DM. And the protein–protein interaction (PPI) network was established using the above common targets to screen key genes through protein interactions. Meanwhile, these common targets were used for GO and KEGG analyses to further elucidate how they exert antidiabetic effects. Finally, a gene pathway network was established to capture the core one in common targets enriched in the major pathways to further illustrate the role of specific genes. Based on the data obtained, a total of 67 active compounds and 906 targets of SXD were identified. Four thousand one hundred and seventy-six differentially expressed genes with a P value < 0.005 and ∣log2fold change∣>0.5 were determined between T2DM patients and control groups. After further screening, thirty-seven common targets related to T2DM in SXD were finally identified. Through protein interactions, the top 5 genes (YWHAZ, HNRNPA1, HSPA8, HSP90AA1, and HSPA5) were identified. It was found that the functional annotations of target genes were associated with oxygen levels, protein kinase regulator, mitochondria, and so on. The top 20 pathways including the PI3K-Akt signaling pathway, cancers, HIF-1 signaling pathway, and JAK-STAT signaling pathway were significantly enriched. CDKN1A was shown to be the core gene in the gene-pathway network, and other several genes such as CCND1, ERBB2, RAF1, EGF, and VEGFA were the key genes for SXD against T2DM. Based on the network pharmacology approach, we identified key genes and pathways related to the prognosis and pathogenesis of T2DM and also provided a feasible method for further studying the chemical basis and pharmacology of SXD.

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Guozhen Yuan ◽  
Shuai Shi ◽  
Qiulei Jia ◽  
Jingjing Shi ◽  
Shuqing Shi ◽  
...  

Rapid increases in metabolic disorders, such as type 2 diabetes mellitus (T2DM) and hyperlipidemia, are becoming a substantial challenge to worldwide public health. Traditional Chinese medicine has a long history and abundant experience in the treatment of diabetes and hyperlipidemia, and Puerariae lobatae Radix (known as Gegen in Chinese) is one of the most prevalent Chinese herbs applied to treat these diseases. The underlying mechanism by which Gegen simultaneously treats diabetes and hyperlipidemia, however, has not been clearly elucidated to date. Therefore, we systematically explored the potential mechanism of Gegen in the treatment of T2DM complicated with hyperlipidemia based on network pharmacology. We screened the potential targets of Gegen, T2DM, and hyperlipidemia in several online databases. Then, the hub targets were analyzed by performing protein-protein interaction, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment assays, and finally, the complicated connections among compounds, targets, and pathways were visualized in Cytoscape. We found that isoflavones, including daidzein, genistein, and puerarin, as well as β-sitosterol, are the key active ingredients of Gegen responsible for its antidiabetic and antihyperlipidemia effects, which mainly target AKR1B1, EGFR, ESR, TNF, NOS3, MAPK3, PPAR, CYP19A1, INS, IL6, and SORD and multiple pathways, such as the PI3K-Akt signaling pathway; the AGE-RAGE signaling pathway in diabetic complications, fluid shear stress, and atherosclerosis; the PPAR signaling pathway; insulin resistance; the HIF-1 signaling pathway; the TNF signaling pathway; and others. These active ingredients also target multiple biological processes, including the regulation of glucose and lipid metabolism, the maintenance of metabolic homeostasis, and anti-inflammatory and antioxidant pathways. In conclusion, Gegen is a promising therapeutic phytomedicine for T2DM with hyperlipidemia that targets multiple proteins, biological processes, and pathways.


2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Rongrong Zhou ◽  
De Jin ◽  
Yuqing Zhang ◽  
Liyun Duan ◽  
Yuehong Zhang ◽  
...  

Objective. To explore the main bioactive compounds and investigate the underlying mechanism of Pollen Typhae (PT) against diabetic retinopathy (DR) by network pharmacology and molecular docking analysis. Methods. Bioactive ingredients and the target proteins of PT were obtained from TCMSP, and the related target genes were acquired from the SwissTargetPrediction database. The target genes of DR were obtained from GeneCards, TTD database, DisGeNET database, and DrugBank. The compound-target interaction network was established based on Cytoscape 3.7.2. The protein-protein interaction (PPI) network was constructed via STRING database and Cytoscape 3.7.2. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were visualized through DAVID database and Bioinformatics. Ingredient-gene-pathway network analysis was conducted to further screen the ingredients, target proteins, and pathways closely related to the biological mechanism on PT for DR, and molecular docking analysis was performed by SYBYL-X 2.1.1 software. Finally, the mechanism and underlying targets of PT in the treatment of DR were predicted. Results. A total of 8 compounds and 171 intersection targets were obtained based on the online network database. 7 main compounds were screened from compound-target network, and 53 targets including the top six key targets (PTGS2, AKT1, VEGFA, MAPK3, TNF, and EGFR) were further acquired from PPI analysis. The 53 key targets covered 80 signaling pathways, among which PI3K-Akt signaling pathway, focal adhesion, Rap1 signaling pathway, VEGF signaling pathway, and HIF-1 signaling pathway were closely connected with the biological mechanism involved in the alleviation of DR by PT. Ingredient-gene-pathway network shows that AKTI, EGFR, and VEGFA were core genes, kaempferol and isorhamnetin were pivotal ingredients, and VEGF signaling pathway and Rap1 signaling pathway were closely involved in anti-DR. The docking results indicated that five main compounds (arachidonic acid, isorhamnetin, quercetin, kaempferol, and (2R)-5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one) had good binding activity with EGFR and AKT1 targets. Conclusion. The active ingredients in PT may regulate the levels of inflammatory factors, suppress the oxidative stress, and inhibit the proliferation, migration, and invasion of retinal pericytes by acting on PTGS2, AKT1, VEGFA, MAPK3, TNF, and EGFR targets through VEGF signaling pathway, PI3K-Akt signaling pathway, Rap1 signaling pathway, and HIF-1 signaling pathway to play a therapeutic role in diabetic retinopathy.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10111
Author(s):  
Vahap Murat Kutluay ◽  
Neziha Yagmur Diker

Background Type 2 diabetes mellitus (T2DM) is a metabolic disease affecting a huge population worldwide. Teucrium polium L. has been used as a folk medicine for the treatment of T2DM in Anatolia, Turkey. The antihyperglycemic effect of the plant was reported previously. However, there was no detailed study on the underlying molecular mechanisms. In this study, we generated a research plan to clarify the active constituents of the extract and uncover the molecular mechanisms using network pharmacology analysis. Methods For this purpose, we composed a dataset of 126 compounds for the phytochemical profile of the aerial parts of T. polium. Drug-likeness of the compounds was evaluated, and 52 compounds were selected for further investigation. A total of 252 T2DM related targets hit by selected compounds were subjected to DAVID database. Results The KEGG pathway analysis showed enrichment for the TNF signaling pathway, insulin resistance, the HIF-1 signaling pathway, apoptosis, the PI3K-AKT signaling pathway, the FOXO signaling pathway, the insulin signaling pathway, and type 2 diabetes mellitus which are related to T2DM . AKT1, IL6, STAT3, TP53, INS, and VEGFA were found to be key targets in protein-protein interaction. Besides these key targets, with this study the role of GSK3β, GLUT4, and PDX1 were also discussed through literature and considered as important targets in the antidiabetic effect of T. polium. Various compounds of T. polium were shown to interact with the key targets activating PI3K-AKT and insulin signaling pathways. Conclusions According to these findings, mainly phenolic compounds were identified as the active components and IRS1/PI3K/AKT signaling and insulin resistance were identified as the main pathways regulated by T. polium. This study reveals the relationship of the compounds in T. polium with the targets of T2DM in human. Our findings suggested the use of T. polium as an effective herbal drug in the treatment of T2DM and provides new insights for further research on the antidiabetic effect of T. polium.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1245
Author(s):  
Shu Zhang ◽  
Qi Ge ◽  
Liang Chen ◽  
Keping Chen

Diabetes mellitus (DM), as a chronic disease caused by insulin deficiency or using obstacles, is gradually becoming a principal worldwide health problem. Pueraria lobata is one of the traditional Chinese medicinal and edible plants, playing roles in improving the cardiovascular system, lowering blood sugar, anti-inflammation, anti-oxidation, and so on. Studies on the hypoglycemic effects of Pueraria lobata were also frequently reported. To determine the active ingredients and related targets of Pueraria lobata for DM, 256 metabolites were identified by LC/MS non targeted metabonomics, and 19 active ingredients interacting with 51 DM-related targets were screened. The results showed that puerarin, quercetin, genistein, daidzein, and other active ingredients in Pueraria lobata could participate in the AGE-RAGE signaling pathway, insulin resistance, HIF-1 signaling pathway, FoxO signaling pathway, and MAPK signaling pathway by acting on VEGFA, INS, INSR, IL-6, TNF and AKT1, and may regulate type 2 diabetes, inflammation, atherosis and diabetes complications, such as diabetic retinopathy, diabetic nephropathy, and diabetic cardiomyopathy.


2021 ◽  
Vol 49 (3) ◽  
pp. 030006052199759
Author(s):  
Jiajia Tian ◽  
Yanyan Zhao ◽  
Lingling Wang ◽  
Lin Li

Aims To analyze expression of members of the Toll-like receptor (TLR)4/myeloid differentiation primary response 88 (MyD88)/nuclear factor (NF)-κB signaling pathway in the heart and liver in a rat model of type 2 diabetes mellitus (T2DM). Our overall goal was to understand the underlying pathophysiological mechanisms. Methods We measured fasting blood glucose (FBG) and insulin (FINS) in a rat model of T2DM. Expression of members of the TLR4/MyD88/NF-κB signaling pathway as well as downstream cytokines was investigated. Levels of mRNA and protein were assessed using quantitative real-time polymerase chain reaction and western blotting, respectively. Protein content of tissue homogenates was assessed using enzyme-linked immunosorbent assays. Results Diabetic rats had lower body weights, higher FBG, higher FINS, and higher intraperitoneal glucose tolerance than normal rats. In addition, biochemical indicators related to heart and liver function were elevated in diabetic rats compared with normal rats. TLR4 and MyD88 were involved in the occurrence of T2DM as well as T2DM-related heart and liver complications. TLR4 caused T2DM-related heart and liver complications through activation of NF-κB. Conclusions TLR4/MyD88/NF-κB signaling induces production of tumor necrosis factor-α, interleukin-6, and monocyte chemoattractant protein-1, leading to the heart- and liver-related complications of T2DM.


Author(s):  
Zarish Noreen ◽  
Christopher A. Loffredo ◽  
Attya Bhatti ◽  
Jyothirmai J. Simhadri ◽  
Gail Nunlee-Bland ◽  
...  

The epidemic of type 2 diabetes mellitus (T2DM) is an important global health concern. Our earlier epidemiological investigation in Pakistan prompted us to conduct a molecular investigation to decipher the differential genetic pathways of this health condition in relation to non-diabetic controls. Our microarray studies of global gene expression were conducted on the Affymetrix platform using Human Genome U133 Plus 2.0 Array along with Ingenuity Pathway Analysis (IPA) to associate the affected genes with their canonical pathways. High-throughput qRT-PCR TaqMan Low Density Array (TLDA) was performed to validate the selected differentially expressed genes of our interest, viz., ARNT, LEPR, MYC, RRAD, CYP2D6, TP53, APOC1, APOC2, CYP1B1, SLC2A13, and SLC33A1 using a small population validation sample (n = 15 cases and their corresponding matched controls). Overall, our small pilot study revealed a discrete gene expression profile in cases compared to controls. The disease pathways included: Insulin Receptor Signaling, Type II Diabetes Mellitus Signaling, Apoptosis Signaling, Aryl Hydrocarbon Receptor Signaling, p53 Signaling, Mitochondrial Dysfunction, Chronic Myeloid Leukemia Signaling, Parkinson’s Signaling, Molecular Mechanism of Cancer, and Cell Cycle G1/S Checkpoint Regulation, GABA Receptor Signaling, Neuroinflammation Signaling Pathway, Dopamine Receptor Signaling, Sirtuin Signaling Pathway, Oxidative Phosphorylation, LXR/RXR Activation, and Mitochondrial Dysfunction, strongly consistent with the evidence from epidemiological studies. These gene fingerprints could lead to the development of biomarkers for the identification of subgroups at high risk for future disease well ahead of time, before the actual disease becomes visible.


Sign in / Sign up

Export Citation Format

Share Document