scholarly journals Bioinspired Synthesis of Acacia senegal Leaf Extract Functionalized Silver Nanoparticles and Its Antimicrobial Evaluation

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Edwina Olohirere Uzunuigbe ◽  
Abidemi Paul Kappo ◽  
Sixberth Mlowe ◽  
Neerish Revaprasadu

Synthesizing nanoparticles with the less environmentally malignant approach using plant extract is of great interest; this is because most of the chemical approaches can be very costly, toxic, and time-consuming. Herein, we report the use of Acacia senegal leaf extracts to synthesize silver nanoparticles (AgNPs) using an environmentally greener approach. Silver ions were reduced using the bioactive components of the plant extracts with observable colour change from faint colourless to a brownish solution as indication of AgNP formation. The structural properties of the as-synthesized AgNPs were characterized using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and UV-Vis absorption spectrum. Antimicrobial assessment of the as-synthesized AgNPs was explored on some strains of gram-positive and gram-negative bacteria. The obtained results indicate that the as-synthesized AgNPs are pure crystallite of cubic phase of AgNPs, fairly dispersed with a size range of 10–19 nm. The AgNPs were found to be small in size and exhibit significant antibacterial activities, suggesting that the as-synthesized AgNPs could be used in the pharmaceutical and food industries as bactericidal agents.

Author(s):  
Shyla Marjorie Haqq ◽  
Amit Chattree

  This review is based on the synthesis of silver nanoparticles (AgNPs) using a green approach which is biofabricated from various medicinal plants. AgNPs were prepared from the various parts of the plants such as the flowers, stems, leaves, and fruits. Various physiochemical characterizations were performed using the ultraviolet (UV)-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy, transmission electron microscopy, and energy dispersive spectroscopy. AgNPs were also used to inhibit the growth of bacterial pathogens and were found to be effective against both the Gram-positive and Gram-negative bacteria. For the silver to have antimicrobial properties, it must be present in the ionized form. All the forms of silver-containing compounds with the observed antimicrobial properties are in one way or another source of silver ions. Although the antimicrobial properties of silver have been known, it is thought that the silver atoms bind to the thiol groups in enzymes and subsequently leads to the deactivation of enzymes. For the silver to have antimicrobial properties, it must be present in the ionized form. The study suggested that the action of the AgNPs on the microbial cells resulted into cell lysis and DNA damage. AgNPs have proved their candidature as a potential antibacterial against the multidrug-resistant microbes. The biological agents for synthesizing AgNPs cover compounds produced naturally in microbes and plants. Reaction parameters under which the AgNPs were being synthesized hold prominent impact on their size, shape, and application. Silver nanoparticle synthesis and their application are summarized and critically discussed in this review.


2019 ◽  
Vol 8 (1) ◽  
pp. 590-599 ◽  
Author(s):  
Kaushik Roy ◽  
Ambikesh K. Srivastwa ◽  
Chandan K. Ghosh

Abstract In this report, we present a simple and unexplored procedure for green synthesis of silver nanoparticles featuring exudation of Euphorbia acruensis along with the study of its antibacterial and anticoagulant properties. Analytical techniques like ultraviolet visible spectroscopy (UV-Vis), X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) were used to analyse the production, crystallinity and morphology of bio-reduced silver nanoparticles. The antibacterial study was performed by following standard disc diffusion method. Most importantly, the anticoagulant and thrombolytic activities of biogenic silver nanoparticles were evaluated by addition of nanoparticles to human blood samples under practical conditions. These green synthesized silver nanoparticles were found to have potent antibacterial, anticoagulant and thrombolytic properties which make them an attractive choice for future medical applications.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4479
Author(s):  
Pei-Jun Li ◽  
Jiang-Juan Pan ◽  
Li-Jun Tao ◽  
Xia Li ◽  
Dong-Lin Su ◽  
...  

The present study focuses on the biological synthesis, characterization, and antibacterial activities of silver nanoparticles (AgNPs) using extracellular extracts of Aspergillus japonicus PJ01.The optimal conditions of the synthesis process were: 10 mL of extracellular extracts, 1 mL of AgNO3 (0.8 mol/L), 4 mL of NaOH solution (1.5 mol/L), 30 °C, and a reaction time of 1 min. The characterizations of AgNPs were tested by UV-visible spectrophotometry, zeta potential, scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and thermogravimetric (TG) analyses. Fourier transform infrared spectroscopy (FTIR) analysis showed that Ag+ was reduced by the extracellular extracts, which consisted chiefly of soluble proteins and reducing sugars. In this work, AgNO3 concentration played an important role in the physicochemical properties and antibacterial properties of AgNPs. Under the AgNO3 concentration of 0.2 and 0.8 mol/L, the diameters of AgNPs were 3.8 ± 1.1 and 9.1 ± 2.9 nm, respectively. In addition, smaller-sized AgNPs showed higher antimicrobial properties, and the minimum inhibitory concentration (MIC) values against both E. coli and S. aureus were 0.32 mg/mL.


2006 ◽  
Vol 510-511 ◽  
pp. 78-81 ◽  
Author(s):  
Guo Yu Lv ◽  
Yu Bao Li ◽  
Ai Ping Yang ◽  
Xiang Zhang ◽  
Wei Hu Yang ◽  
...  

In this paper a series of silver ions-substituted hydroxyapatites (HA) were prepared. The antibacterial activities of these materials on textiles against bacteria have been investigated. Titania (TiO2) was selectively added into the materials to decrease the silver-ions concentration to get the same active antimicrobial effects. The microstructure, the shape and size, concentration of silver, and the groups of the composite materials were characterized using transmission electron microscopy (TEM), infrared spectroscopy (IR), Atomic absorption spectroscopy (AAS), and X-ray diffraction (XRD). The results showed that there was a dose dependent-effect of silver-ions concentration from the disk diffusion test. The higher the silver-ions concentration, the better the antibacterial activity of the composite materials was. Keeping silver-ions concentration constant, the antibacterial activity of the materials for adding Titania was better than that of without Titania. Moreover, the addition of Titania would inhibit the discolouration of the composite materials. The antibacterial activities of the composite materials differentiate to some extent with the bacterial strains.


Author(s):  
T. A. Ihum ◽  
C. C. Iheukwumere ◽  
I. O. Ogbonna ◽  
G. M. Gberikon

This study was carried out to determine the antimicrobial activity of silver nanoparticles synthesized using goat milk against pathogens of selected vegetables. Synthesis of Silver nanoparticles was done using Goat milk, and characterized using Ultra Violet-Visible absorption spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X- ray diffraction (XRD) and Transmission Electron Microscopy (TEM). Maximum absorbance of Goat milk synthesized AgNPs was observed at 417 nm, with FTIR peaks at 3455 cm−1, 1628 cm−1, 1402 cm−1, 1081 cm−1 and 517 cm−1, indicating that proteins in Goat milk (GM) were the capping and stabilization molecules involved the synthesis of AgNPs. Transmission electron microscopy analysis showed that the biosynthesized particles were spherical in shape having a size of 10-100 nm, X- ray diffraction (XRD) pattern agreed with the crystalline nature and face-centered cubic phase of AgNPs. Evaluation of the antimicrobial activity of AgNPs synthesized using GM against the indicator strains (Staphylococcus aureus CIP 9973, Pectobacterium carotovorum Pec1, Enterobacter cloacae AS10, Klebsiella aerogenes OFM28, Proteus mirabilis UPMSD3 and Escherichia coli 2013C-3342) isolated from selected vegetables, was carried out using the Agar diffusion assay at different concentrations of 25, 75 and 100 µl/ml. The present study demonstrated that the AgNPs synthesized using Goat milk have potent biological activities, which can find applications in diverse areas.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Palem Ramasubba Reddy ◽  
Shimoga D. Ganesh ◽  
Nabanita Saha ◽  
Oyunchimeg Zandraa ◽  
Petr Sáha

Bioreduction of silver ions following one pot process is described to achieveRheum rhabarbarum(RR) based silver nanoparticles (SNPs) which is termed as “RR-SNPs.” The Ultraviolet–visible spectroscopy (UV–vis) confirms the characteristic surface plasmon resonance band for RR-SNPs in the range of 420–460 nm. The crystalline nature of SNPs was confirmed by X-ray diffraction (XRD) peaks at 38.2°, 45.6°, 64.2°, and 76.8°. Transmission electron microscopy (TEM) and scanning electronic microscopy (SEM) confirm the shape of synthesized SNPs. They are roughly spherical but uniformly distributed, and size varies from 60 to 80 nm. These biogenic SNPs show persistent zeta potential value of 34.8 mV even after 120 days and exhibit potent antibacterial activity in presence ofEscherichia coli(CCM 4517) andStaphylococcus aureus(CCM 4516). In addition, cytotoxicity of RR-SNPs againstin vitrohuman epithelial carcinoma (HeLa) cell line showed a dose-response activity. The lethal concentration (LC50) value was found to be 28.5 μg/mL for RR-SNPs in the presence of HeLa cells. These findings help us to evaluate their appropriate applications in the field of nanotechnology and nanomedicine.


2020 ◽  
Vol 32 (9) ◽  
pp. 2229-2232
Author(s):  
TANVEER ALAM ◽  
SAPNA TYAGI ◽  
GOUTAM KUMAR ◽  
AZHAR KHAN ◽  
NEHA CHAUHAN ◽  
...  

Silver nanoparticles (AgNPs) have received significant attention due to their distinctive antimicrobial, anticancer, catalytic and photochemical activity. The objective of this work is to amalgamate silver nanoparticles from the aqueous extract of Biamarckia nobilis seeds using green method, characterization using UV-visible spectroscopy, X-ray diffraction, transmission electron microscopy and FTIR spectroscopy. Further, its antimicrobial and anticancer activities were evaluated. The results displayed the characteristic UV peak, cubic phase with crystalline nature, spherical in shape having average size 14 nm, prominent peaks of bio-functional groups, good antimicrobial and anticancer activities.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Hessa H. Al-Rasheed ◽  
Kholood A. Dahlous ◽  
Essam N. Sholkamy ◽  
Sameh M. Osman ◽  
Omar H. Abd-Elkader ◽  
...  

Herein, we described the modification of chitosan with cyanuric chloride as a mediator for preparation of chitosan-s-triazinyl-bis(2-aminomethylpyridine) and chitosan-s-triazinyl-bis(8-oxyquinoline) derivatives to be used as reagents for preparation of silver nanoparticles under ecofriendly conditions. These two reagents are convenient and effective for reduction of silver ions to silver nanoparticles with particle size less than 10 nm that might be suitable for industrial and medicinal applications. The formation and particle size of AgNPs are characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscope (SEM), and energy-dispersive X-ray analysis (EDX). The antimicrobial activity of the two modified chitosan-s-triazine-AgNPs was evaluated against activities against Gram-positive bacteria (M. luteus ATCC 10240 and MRSA ATCC 43300), Gram-negative bacteria (E. coli ATCC 25922 and P. aeruginosa ATCC 75853), and C. albicans. The results showed that chitosan-s-triazinyl-bis(2-aminomethylpyridine) AgNPs showed high antimicrobial activities against all the tested microorganisms, while their analogous chitosan-s-triazinyl-bis(8-oxyquinoline) AgNPs showed moderate activities.


2009 ◽  
Vol 1217 ◽  
Author(s):  
Vinodkumar Etacheri ◽  
Reenamole Georgekutty ◽  
Michael K Seery ◽  
Suresh C Pillai

AbstractSilver nanoparticles having different size and plasmon resonances were synthesized through a single step aqueous based method. The current procedure was based on the reduction of silver ions by ascorbic acid in the presence of sodiumborohydride and trisodium citrate. Triangular colloidal nanoparticles having different plasmon resonances (and hence different size and colours) were synthesized by varying only the concentration of ascorbic acid. These nanoparticles were found to be stable without using any surfactants or polymers. This study revealed a strong correlation between particle growth and concentration of constituent chemicals. Crystallinity and phase purity of the silver samples were investigated through powder X-ray diffraction studies (XRD). Absorption spectra of various silver particles were recorded using UV/Vis/NIR spectrometer. Morphological analysis was performed using transmission electron microscopy (TEM) and average edge lengths of nanoparticles were also calculated.


2014 ◽  
Vol 32 (3) ◽  
pp. 408-413 ◽  
Author(s):  
Pandian Raja ◽  
Afidah Rahim ◽  
Ahmad Qureshi ◽  
Khalijah Awang

AbstractColloidal silver nanoparticles were prepared by rapid green synthesis using different tannin sources as reducing agent viz. chestnut (CN), mangrove (MG) and quebracho (QB). The aqueous silver ions when exposed to CN, MG and QB tannins were reduced which resulted in formation of silver nanoparticles. The resultant silver nanoparticles were characterized using UV-Visible, X-ray diffraction (XRD), scanning electron microscopy (SEM/EDX), and transmission electron microscopy (TEM) techniques. Furthermore, the possible mechanism of nanoparticles synthesis was also derived using FT-IR analysis. Spectroscopy analysis revealed that the synthesized nanoparticles were within 30 to 75 nm in size, while XRD results showed that nanoparticles formed were crystalline with face centered cubic geometry.


Sign in / Sign up

Export Citation Format

Share Document