scholarly journals Research on the Deformation Mechanism and Directional Blasting Roof Cutting Control Measures of a Deep Buried High-Stress Roadway

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Xiaojie Yang ◽  
Chenkang Liu ◽  
Honglei Sun ◽  
Songlin Yue ◽  
Yuguo Ji ◽  
...  

Affected by the mining activities of the working face, the surrounding rock of the roadway is easily deformed and destroyed. For deep buried roadways, the deformation and destruction of the surrounding rock is particularly prominent. Under the influence of in situ stress fluctuation, 3−1103 tailgate of the Hongqinghe coal mine was in a complex stress environment with a maximum stress exceeding 20 MPa. Affected by mining stress, the roadway behind the working face was seriously deformed. In order to alleviate the deformation of the roadway, directional blasting and cutting measures for the 3−1103 tailgate were adopted in this paper. The mechanism of crack propagation in single-row to three-hole directional blasting was revealed by numerical simulation. The blasted rock was divided into three regions according to the crack condition. The numerical analysis of the cutting heights of 0 m, 10 m, 12 m, and 14 m, respectively, showed the stress peaks of different cutting heights and the deformation law of the surrounding rock. The pressure relief effect was the best at 14 m cutting height. At this time, the peak stress was 39 MPa with the smallest roadway deformation. Based on numerical simulation and theoretical analysis results, engineering tests were carried out. Field monitoring showed that the deformation of the roadway was inversely proportional to the roof cutting height. The higher the cutting height is, the more preferential the roadway is to reach the stable state. It can be concluded that directional blasting can change the surrounding rock structure, control the deformation of the roadway, and play a role in pressure relief. It provides a new measure to control roadway deformation.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Wen Zhai ◽  
Yachao Guo ◽  
Xiaochuan Ma ◽  
Nailv Li ◽  
Peng Zhang ◽  
...  

With the increase of mining depth in underground engineering, deep ground pressure has an extremely unfavorable impact on safety production and the economic benefits of coal mines and the control of the roadway stability in deep mines are gradually highlighted. In this study, the working face 14203 of the Zaoquan coal mine was taken as the engineering background, the deformation mechanism of surrounding rock in the deep-buried high-stress roadway was analyzed, and the hydraulic fracturing pressure relief technology in the advanced roadway was proposed for surrounding rock control. Finally, the numerical simulation and field tests were used to validate the comprehensive effect of the proposed technology. Without damaging the roadway stability in the working face, the hydraulic fracturing pressure relief technology can optimize the stress environment and stability of the roadway through the artificial control of the roof fracture position. The numerical simulation shows that under the action of hydraulic fracturing, the cutting slot is formed, the deformation and failure mode of the roof are changed, the stress of surrounding rock is reduced, and the development of the plastic zone of surrounding rock is limited. As a result, the stability of surrounding rock in the roadway is effectively protected. The field test shows that after the adoption of hydraulic fracturing pressure relief technology, the roof subsidence, floor separation, bolt stress, and cable stress decrease, and the deformation of surrounding rock is reduced significantly. Therefore, hydraulic fracturing pressure relief technology is verified as an effective method to control the large deformation of the surrounding rock in the deep-buried roadway.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Wenyu Lv ◽  
Kai Guo ◽  
Jianhao Yu ◽  
Xufeng Du ◽  
Kun Feng

The movement of the overlying strata in steeply dipping coal seams is complex, and the deformation of roof rock beam is obvious. In general, the backfill mining method can improve the stability of the surrounding rock effectively. In this study, the 645 working face of the tested mine is used as a prototype to establish the mechanical model of the inclined roof beam using the sloping flexible shield support backfilling method in a steeply dipping coal seam, and the deflection equation is derived to obtain the roof damage structure and the maximum deflection position of the roof beam. Finally, numerical simulation and physical similarity simulation experiments are carried out to study the stability of the surrounding rock structure under backfilling mining in steeply dipping coal seams. The results show the following: (1) With the support of the gangue filling body, the inclined roof beam has smaller roof subsidence, and the maximum deflection position moves to the upper part of working face. (2) With the increase of the stope height, the stress and displacement field of the surrounding rock using the backfilling method show an asymmetrical distribution, the movement, deformation, and failure increase slowly, and the increase of the strain is relatively stable. Compared with the caving method, the range and degree of the surrounding rock disturbed by the mining stress are lower. The results of numerical simulation and physical similarity simulation experiment are generally consistent with the theoretically derived results. Overall, this study can provide theoretical basis for the safe and efficient production of steeply dipping coal seams.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Bing-Jun Sun ◽  
Xin-Zhu Hua ◽  
Yan Zhang ◽  
Jiadi Yin ◽  
Kai He ◽  
...  

The mechanical model of the basic roof fracture structure is established on the basis of key block theory to study the roof breaking mechanism of gob-side entry retaining under roof cutting and pressure relief, and the analytical formula of roof support resistance is derived when the key block of the basic roof is stable. The influence of roof cutting angle and cutting height on roof support resistance is also analyzed. Determining the cutting seam parameters of the retained roadway roof is necessary to identify the support resistance of the roadway roof due to the correlation between the roof cutting parameters and the support resistance. Taking the II 632 haulage drift of the Hengyuan coal mine as the engineering background, FLAC3D numerical simulation is used in this paper to analyze the influence of different roof cutting angles and cutting heights on the surrounding rock structure evolution of retained roadways. Results show that the roof cutting angle and cutting height respond to the support resistance of the retained roadway roof, and the support resistance required by the roof increases with the roof cutting angle and cutting height. This condition ensures that the side roof of the gob can be cut off smoothly, and the support resistance required by the roof of retained roadways is within a reasonable range. Through theoretical and numerical simulation analysis, the reasonable roof cutting height of II 632 haulage drift is 8 m and the roof cutting angle is 15°. The theoretical analysis and numerical simulation results reveal that the required support resistance to maintain the stability of the roadway roof is 0.38 MPa. The supporting scheme of the roof of the II 632 haulage drift in the Hengyuan coal mine is then designed. Finally, the field industrial test is used for verification. The borehole imaging results show that the overall line of the retained roadway roof is small based on the description of field monitoring results. The deformation of the surrounding rock surface of the retained roadway is less than 100 mm, and the roadway is 40 m from the lagging working face. The deformation rate of surrounding rock decreases with the increase in distance from the working face. The integrity of the retained roadway roof is good, and the deformation of the surrounding rock is effectively controlled.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xie Fuxing

The gob-side roadway of 130205, a large-mining-height working face in the Yangchangwan coal mine, was investigated in terms of the mine pressure law and support technology for large mining heights and narrow coal pillars for mining roadways. The research included field investigations, theoretical analysis, numerical simulation, field tests, and other methods. This paper analyzes the form of movement for overlying rock structure in a gob-side entry with a large mining height and summarizes the stress state and deformation failure characteristics of the surrounding rock. The failure mechanism of the surrounding rock of the gob-side roadway and controllable engineering factors causing deformation were analyzed. FLAC3D numerical simulation software was used to explore the influence law of coal pillar width, working face mining height, and mining intensity on the stability of the surrounding rock of the gob-side roadway. Ensuring the integrity of the coal pillar, improving the coordination of the system, and using asymmetric support structures as the core support concept are proposed. A reasonably designed support scheme for the gob-side roadway of the working face for 130205 was conducted, and a desirable engineering effect was obtained through field practice verification.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Enze Zhen ◽  
Yubing Gao ◽  
Yajun Wang ◽  
Siming Wang

Gob-side entry retaining is an environmentally friendly nonpillar mining technology with high efficiency and safety. With the continuous exploration of the gob-side entry retained by filling (GERF) with roadside supports, the GERF has enabled nonpillar mining. However, dense roadside supports or filled artificial pillars become subject to the pressure of roof pressure instead of coal pillars, which causes problems. Recently, an original innovative gob-side entry retaining technology by roof cutting and pressure relief (RCPR) was developed and extensively implemented in China’s coal production. The gob-side entry formed by different retaining methods has exhibited some differences in the strata behaviors and the results of retained roadways. Via industrial case and numerical simulation, this study explored the influence of entry retaining methods on the results of the entry retained. The results indicate that the total deformation of the surrounding rock of the GERF is larger and more severe; the convergence between the roof and floor and the entry sides displacement is 885 mm and 216 mm, respectively; the hydraulic support pressure near the retained entry is larger; and the peak value is 38.7 MPa. The deformation of the surrounding rock by RCPR is relatively small; the convergence between the roof and the floor and the entry sides displacement is 351 mm and 166 mm, respectively; the hydraulic support pressure near the retained entry is weakened to a certain extent; the peak value is 32.2 MPa; and the peak pressure is reduced by 16.8% compared with the GERF. A numerical simulation analysis reveals the following findings: RCPR changes the surrounding rock structure of a gob-side entry, optimizes the surrounding rock stress environment, and belongs to active pressure-relief entry retaining; the GERF does not adjust the surrounding rock structure of a gob-side entry and belongs to passive pressure-resistance entry retaining; and the surrounding rock of a gob-side entry is significantly affected by pressure. These two methods of gob-side entry retaining have different effects on the surrounding rock of the entry retained. This study can contribute to an exploration of the strata behaviors and the results of a retained roadway by the GERF or RCPR method.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaoming Sun ◽  
Li Gan ◽  
Zhao Chengwei ◽  
Tang Jianquan ◽  
He Manchao ◽  
...  

Gob-side entry retaining through precut overhanging hard roof (GERPOHR) method is one of the commonly used methods for nonpillar mining. However, feasibility studies of controlling rockburst by this method are few. Rockburst occurs in hard thick strata with a higher probability, larger scale, and higher risk. To better understand the GERPOHR method is beneficial for rockburst mitigation. In this paper, the design of GERPOHR was first introduced. And the layout of the working face was optimized. Then, based on the numerical simulation, the stress and displacement distribution characteristics were compared under the condition of conventional mining and GERPOHR method. The research shows that the intervals of main roof weighting could be decreased through the precut overhanging hard roof method. And the peak value of abutment pressure decreased. Meanwhile, the energy accumulation and the stress fluctuation could be alleviated in roadway surrounding rock.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 2032 ◽  
Author(s):  
Deyuan Fan ◽  
Xuesheng Liu ◽  
Yunliang Tan ◽  
Shilin Song ◽  
Qingheng Gu ◽  
...  

Roof cutting is an effective technique for controlling the deformation and failure of the surrounding rock in deep gob-side entry. The determination of the roof cutting parameters has become a popular research subject. Initially, two mechanical models are established for the non-roof-cutting and roof-cutting of gob-side entry in deep mining conditions. On this basis, the necessity and significance of roof cutting is revealed by analysing the stress and displacement of roadside prop. The Universal Distinct Element Code numerical simulation model is established to determine the key roof-cutting parameters (cutting angle and cutting height) according to the on-site situation of No. 2415 headentry of the Suncun coal mine, China. The numerical simulation results show that with the cutting angle and height increase, the vertical stress and horizontal displacement of the coal wall first increase and then decrease, as in the case of the vertical stress and displacement of roadside prop. Therefore, the optimum roof cutting parameters are determined as a cutting angle of 70° and cutting height of 8 m. Finally, a field application was performed at the No. 2415 headentry of the Suncun coal mine. In situ investigations show that after 10 m lagged the working face, the stress and displacement of roadside prop are obviously reduced with the hanging roof smoothly cut down, and they are stable at 19 MPa and 145 mm at 32 m behind the working face, respectively. This indicates that the stability of the surrounding rock was effectively controlled. This research demonstrates that the key parameters determined through a numerical simulation satisfactorily meet the production requirements and provide a reference for ensuring safe production in deep mining conditions.


2013 ◽  
Vol 353-356 ◽  
pp. 1310-1314
Author(s):  
Wei Jian Yu ◽  
Yan Si Qu ◽  
Dai Qiang Deng

According to large deformation and supporting problem ofroadway surrounding rock under deep high stress caused by broken-expanddeformation, supporting numerical simulation and optimization on a roadway werestudied. Two primary support scheme of medium length anchor with self-drillinganchor and short pre-stressed anchor withself-drilling anchor and three secondary support scheme of 5m, 6mand 7m length cable were proposedbased on roadway engineering characteristics; Calculationparameters of support structureparameters and surrounding rock were determined based on broken-expanddeformation mechanism, and scheme were calculated respectively; Deformation, plasticzone and stable state of surrounding rock under different support were analyzedbased on results individually, and optimal support scheme were opted. Theresults showed that roadway used 5.5~6.0manchor cable as secondary support whose stability factor can be achieved 1.28could meet productive requirement.


2013 ◽  
Vol 446-447 ◽  
pp. 1421-1424 ◽  
Author(s):  
Shu Guang Zhang ◽  
Long Chen ◽  
Hong Yu Jia

Roadway borehole pressure relief and let the pressure anchor combined support technology were based on using the new pressure high strength bolt instead of ordinary bolt ,Combined with the borehole pressure relief principle, aim at releasing high stress of surrounding rock of roadway ,Complying with the deformation characteristics of supporting technology of the surrounding rock. In this paper, we used scaled numerical simulation technology —— ADINA to analyze the roadway borehole pressure relief and let the pressure anchor coupling support technology. To the tunnel, we used the method of numerical simulation of let the pressure bolt support independently, drilling pressure relief, and borehole pressure relief and let the pressure anchor coupling support three kinds of the comparison numerical simulation. The advantages of coupling supporting effect was elaborated, It was instructive for the deeply roadway engineering in the future.


2014 ◽  
Vol 986-987 ◽  
pp. 2180-2183 ◽  
Author(s):  
Wan Jiang Li

The problem of maintaining the surrounding rock in deep high-stress roadway has been a major subject in coal mining. The analysis of high stress roadway supporting mechanism, and the research on high stress roadway supporting technology as well as its adaptability have important significance in improving the support technology of mine. This paper analyzes the features and reasons of the high stress roadway deformation and failure, and the high stress roadway supporting measure is put forward. At the same time the paper systematically analyzed the guided roadway pressure relief combined support technology which has been used in the transporting roadway in Taoyang Coal Mine and achieved good.


Sign in / Sign up

Export Citation Format

Share Document