scholarly journals Surrounding Rock Movement of Steeply Dipping Coal Seam Using Backfill Mining

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Wenyu Lv ◽  
Kai Guo ◽  
Jianhao Yu ◽  
Xufeng Du ◽  
Kun Feng

The movement of the overlying strata in steeply dipping coal seams is complex, and the deformation of roof rock beam is obvious. In general, the backfill mining method can improve the stability of the surrounding rock effectively. In this study, the 645 working face of the tested mine is used as a prototype to establish the mechanical model of the inclined roof beam using the sloping flexible shield support backfilling method in a steeply dipping coal seam, and the deflection equation is derived to obtain the roof damage structure and the maximum deflection position of the roof beam. Finally, numerical simulation and physical similarity simulation experiments are carried out to study the stability of the surrounding rock structure under backfilling mining in steeply dipping coal seams. The results show the following: (1) With the support of the gangue filling body, the inclined roof beam has smaller roof subsidence, and the maximum deflection position moves to the upper part of working face. (2) With the increase of the stope height, the stress and displacement field of the surrounding rock using the backfilling method show an asymmetrical distribution, the movement, deformation, and failure increase slowly, and the increase of the strain is relatively stable. Compared with the caving method, the range and degree of the surrounding rock disturbed by the mining stress are lower. The results of numerical simulation and physical similarity simulation experiment are generally consistent with the theoretically derived results. Overall, this study can provide theoretical basis for the safe and efficient production of steeply dipping coal seams.

2021 ◽  
Author(s):  
Luo Shenghu ◽  
tong wang ◽  
Wu Yongping ◽  
Huangfu Jingyu ◽  
Zhao Huatao

Abstract The key to the safe and efficient longwall mining of steeply dipping seams lies in the stability control of the "support-surrounding rock" system. This paper analyzes the difficulty of controlling the stability of the support during the longwall mining process of steeply dipping coal seams in terms of the characteristics of the non-uniform filled-in gob using a combination of physical test, theoretical analysis and field measurements. Considering the floor as an elastic foundation, we built a "support-surrounding rock" mechanical model based on data obtained on "support-surrounding rock" systems in different regions and the laws of support motion under different load conditions. Our findings are summarized as follows. First, depending on the angle of the coal seam, the caving gangue will roll (slide) downward along the incline, resulting in the formation of a non-uniform filling zone in the deep gob in which the lower, middle, and upper sections are filled, half-filled, and empty, respectively. In addition, an inverted triangular hollow surface is formed on the floor of the gob in the middle and upper sections behind the support. Furthermore, as the angle of the coal seam, length of the working face, and mining height increase, the characteristics of the non-uniform filled-in gob are enhanced. Second, we found that, as a result of support by the gangue, the "support-surrounding rock" system is relatively stable in the lower part of the working face while, in the middle and upper sections of the working face, the contact method and loading characteristics of the support are more complicated, making stability control difficult. Third, the magnitude and direction of the load, action point, and mining height all affect the stability of the support to varying degrees, with the tangential load and action position of the roof load having the most significant impacts on the stability of the support. Under loading by the roof, rotation and subsidence of the support inevitably occur, with gradually increasing amplitude and effects on the inter-support and sliding forces. Finally, we found that it is advisable in the process of moving the support to adopt "sliding advance of support" measures and to apply a "down-up" removal order to ensure overall stability. These research results provide reference and guidance of significance to field practice production.


2015 ◽  
Vol 724 ◽  
pp. 100-110
Author(s):  
Shi Guang Ren ◽  
Yong Ping Wu ◽  
Jian Hui Yin

The steeply dipping seam group is defined by the two or more coal seams ,a pitch between 35°~55°. Using masonry beam theory, longitudinal bending theory and “R-S-F” dynamics control theory built a lower area overburden structure mode. Analysed the stability of low position coal seam. The balance requirement and the strength of the structure which is affected by the caving rock and lower coal roof were given. It easily generates two lower position steps rock structure in inclination along working face. Regular breaking of the second structure is the main reason leads to the imbalance of the structure between upper coal pillar and upper coal mining face.The interaction among multiple coal seam panels and overburden structures is the main reason that causes the rock disaster, the unbalance of the lower area may lead to pushing accident, the imbalance of the upper area can generate shock pressure.


2021 ◽  
pp. 014459872110093
Author(s):  
Wei Zhang ◽  
Jiawei Guo ◽  
Kaidi Xie ◽  
Jinming Wang ◽  
Liang Chen ◽  
...  

In order to mine the coal seam under super-thick hard roof, improve the utilization rate of resources and prolong the remaining service life of the mine, a case study of the Gaozhuang Coal Mine in the Zaozhuang Mining Area has been performed in this paper. Based on the specific mining geological conditions of ultra-close coal seams (#3up and #3low coal seams), their joint systematic analysis has been performed, with the focus made in the following three aspects: (i) prevention of rock burst under super-thick hard roof, (ii) deformation control of surrounding rock of roadways in the lower coal seam, and (iii) fire prevention in the goaf of working face. Given the strong bursting tendency observed in upper coal seam and lower coal seam, the technology of preventing rock burst under super-thick hard roof was proposed, which involved setting of narrow section coal pillars to protect roadways and interleaving layout of working faces. The specific supporting scheme of surrounding rock of roadways in the #3low1101 working face was determined, and the grouting reinforcement method of local fractured zones through Marithan was further proposed, to ensure the deformation control of surrounding rock of roadways in lower coal seams. The proposed fire prevention technology envisaged goaf grouting and spraying to plug leaks, which reduced the hazard of spontaneous combustion of residual coals in mined ultra-close coal seams. The technical and economic improvements with a direct economic benefit of 5.55 million yuan were achieved by the application of the proposed comprehensive technical support. The research results obtained provide a theoretical guidance and technical support of safe mining strategies of close coal seams in other mining areas.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xie Fuxing

The gob-side roadway of 130205, a large-mining-height working face in the Yangchangwan coal mine, was investigated in terms of the mine pressure law and support technology for large mining heights and narrow coal pillars for mining roadways. The research included field investigations, theoretical analysis, numerical simulation, field tests, and other methods. This paper analyzes the form of movement for overlying rock structure in a gob-side entry with a large mining height and summarizes the stress state and deformation failure characteristics of the surrounding rock. The failure mechanism of the surrounding rock of the gob-side roadway and controllable engineering factors causing deformation were analyzed. FLAC3D numerical simulation software was used to explore the influence law of coal pillar width, working face mining height, and mining intensity on the stability of the surrounding rock of the gob-side roadway. Ensuring the integrity of the coal pillar, improving the coordination of the system, and using asymmetric support structures as the core support concept are proposed. A reasonably designed support scheme for the gob-side roadway of the working face for 130205 was conducted, and a desirable engineering effect was obtained through field practice verification.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4513 ◽  
Author(s):  
Feng Cui ◽  
Tinghui Zhang ◽  
Xingping Lai ◽  
Jiantao Cao ◽  
Pengfei Shan

Aiming at the serious problems caused by coal mine mining activities causing the rock burst accidents, this paper is based on rock mechanics and material mechanics to establish the key layer breaking by the double-key layer beam breaking structural mechanics model of a single working face and double working face under repeated mining. The theoretical calculation formula of the angle was used as the theoretical basis for the elevation angle of the pre-reloading hole of the hard roof. The rationality and reliability of the formula were verified by the physical similarity simulation experiment and the 3 Dimension Distinct Element Code numerical simulation experiment, revealing the rock formation under the influence of repeated mining. The results show that the derived key layer breaking angle formula is suitable for the theoretical calculation of the breaking angle of the key layer of a single coal seam when the repeated disturbance coefficient is λ = 1; when it is λ = 2, it is suitable for the repeated mining of the short-distance double-coal mining. The rationality and reliability of the theoretical formula of the breaking angle of the double key layer of single coal seam and double coal seam were verified by the physical similarity simulation experiment. Through the 3DEC numerical simulation results and theoretical calculation results, the W1123 working face hard top pre-cracking pressure relief drilling elevation angle was 78°. The drilling peeping method was used to verify the results. The results show that the theoretical formula of the critical layer breaking angle is well applied in engineering practice.


2021 ◽  
pp. 014459872199654
Author(s):  
Xin-yuan Zhao ◽  
Xin-wang Li ◽  
Ke Yang ◽  
Zhen Wei ◽  
Qiang Fu

When gob side entry retaining is carried out in backfill mining, the roof will show different subsidence morphology due to the difference of compactness and supporting force of the backfill body at different positions. This paper analyzed the immediate roof subsidence structure under two extreme conditions, constructed the roof segmented subsidence structure and the mechanical model of roadside backfill body, and used FLAC3D software to investigate the roof migration and the force law of the roadside backfill body under the conditions of different goaf backfilled rates, different width and strength of roadside backfill body. Finally, the backfill practice of a mine in Shandong Province of China is taken as an example for analysis. The results show that the segmented subsidence structure of the immediate roof is related to the mechanical properties of the roadside backfill body and the goaf backfill body. When the backfilled rate of goaf decreases from 95% to 70%, the width of roadside backfill body decreases from 5 m to 1 m, and the elastic modulus decreases from 10 GPa to 0.5 GPa, the greater difference in the subsidence and inclination of the immediate roof on both sides of the roadside backfill body is, the more obvious the segmented subsidence structure characteristics of the immediate roof are, and the greater force on the roadside backfill body will be, the more unfavorable it is to maintain the stability of the roadway surrounding rock and the roadway backfill body. Therefore, when gob side entry retaining is carried out in backfill mining, the surrounding rock structure and the force on roadside backfill body should be considered comprehensively.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Xiaojie Yang ◽  
Chenkang Liu ◽  
Honglei Sun ◽  
Songlin Yue ◽  
Yuguo Ji ◽  
...  

Affected by the mining activities of the working face, the surrounding rock of the roadway is easily deformed and destroyed. For deep buried roadways, the deformation and destruction of the surrounding rock is particularly prominent. Under the influence of in situ stress fluctuation, 3−1103 tailgate of the Hongqinghe coal mine was in a complex stress environment with a maximum stress exceeding 20 MPa. Affected by mining stress, the roadway behind the working face was seriously deformed. In order to alleviate the deformation of the roadway, directional blasting and cutting measures for the 3−1103 tailgate were adopted in this paper. The mechanism of crack propagation in single-row to three-hole directional blasting was revealed by numerical simulation. The blasted rock was divided into three regions according to the crack condition. The numerical analysis of the cutting heights of 0 m, 10 m, 12 m, and 14 m, respectively, showed the stress peaks of different cutting heights and the deformation law of the surrounding rock. The pressure relief effect was the best at 14 m cutting height. At this time, the peak stress was 39 MPa with the smallest roadway deformation. Based on numerical simulation and theoretical analysis results, engineering tests were carried out. Field monitoring showed that the deformation of the roadway was inversely proportional to the roof cutting height. The higher the cutting height is, the more preferential the roadway is to reach the stable state. It can be concluded that directional blasting can change the surrounding rock structure, control the deformation of the roadway, and play a role in pressure relief. It provides a new measure to control roadway deformation.


2021 ◽  
Vol 248 ◽  
pp. 03031
Author(s):  
Chen Zhengwen

In order to understand and grasp the law of roof pressure on the working face of deep inclined coal seams, the law of support resistance distribution, the law of leading support stress distribution and the law of surrounding rock deformation of the two roadways, the 94101 working face of Zhangshuanglou Coal Mine was taken as the engineering background. Through a combination of field measurement, numerical simulation, theoretical analysis, etc, this paper analyzes the laws of roof migration and rock pressure manifestation in deep inclined coal seams.


2021 ◽  
Vol 11 (7) ◽  
pp. 3105
Author(s):  
Xiaozhen Wang ◽  
Jianlin Xie ◽  
Jialin Xu ◽  
Weibing Zhu ◽  
Limin Wang

Longwall pier-column backfilling is a partial backfilling technique initially designed in thin coal seam mines. With the increase of mining intensity, the mining height and width of the backfilling working face will also increase. It is necessary to analyze how changes in working face dimensions influence the control effect of overburden subsidence in pier-column backfilling. In this study, a mining model with a combination of 25 conditions (five different mining heights (1~3 m) × five different mining widths (80~240 m)) was designed using a FLAC3D(Vision 5.0) numerical simulation. The simulation was used to analyze the control effect of overburden subsidence with varying mining heights and widths. In addition, according to the field working face conditions, two physical similarity models were performed to explore the overburden subsidence law in pier-column backfilling with different mining heights and widths. It was observed from the above study that mining heights and widths will have a different influence on the overburden subsidence in longwall pier-column backfilling. The result of this study provides strong theoretical support for evaluating the control effect of overburden subsidence in longwall pier-column backfilling.


2014 ◽  
Vol 587-589 ◽  
pp. 1324-1327
Author(s):  
Hua Jun Xue ◽  
Jun Long Xue ◽  
Xiao Xu ◽  
Jie Kong ◽  
Ming Liang

The buried depth of gateroad in a mine mining, belongs to typical deep-seated roadway in soft strata. Due to the influence of mining, the deformation of roadway was serious. To ensure the stability of roadway surrounding rock during mining, roadway deformation damage law under the influence of mining was studied by FLAC3D numerical simulation. The results show that under the influenced of deep three “high” and one “disturbance”, the surface surrounding rock of roadway destroyed quickly, made a wide range of plastic failure zone. After the roadway excavation, the trend of deformation and deformation rate increased evidently under the influence of mining. And the closer distance of working face, the faster change trend. In 40m from working face, the deformation rate decreases relatively affected by periodic weighting. From working face 10m, the deformation rate is largest.


Sign in / Sign up

Export Citation Format

Share Document