scholarly journals Removal of Textile Dyes by Chemically Treated Sawdust of Acacia: Kinetic and Equilibrium Studies

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Hanane Tounsadi ◽  
Yousra Metarfi ◽  
Noureddine Barka ◽  
Mustapha Taleb ◽  
Zakia Rais

Sawdust of acacia tree has been successfully used to remove textile dyes from wastewater due to its good sorption properties and its good chemical stability. Two materials are prepared by chemical treatment, including acidic and basic sawdust of acacia. The biosorption tests were carried out on two synthetic dyes of textile which are methylene blue (MB) and brilliant blue (BB). Efficient removal of the both dyes has been achieved by the basic treated sawdust acacia. The modeling of biosorption kinetic shows that the biosorption of MB and that of BB are well described by the pseudo-first-order model for both the chemically treated biosorbents. Equilibrium data have also established using Langmuir and Freundlich isotherm models. Langmuir biosorption capacities are 8.13 and 267.04 mg/g onto basic sawdust acacia and 6.19 and 230.76 mg/g onto acidic sawdust acacia, respectively, for BB and MB sorption. A real final effluent of a textile industry was treated by sorption on both biosorbent basis of sawdust acacia. In fact, the kinetic sorption was rapid with a mass ratio of 1 g/L. However, the biosorption process combined with a biological treatment provides a better result through the physicochemical characteristics of the studied effluent.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
I. Osasona ◽  
O. O. Ajayi ◽  
A. O. Adebayo

The feasibility of using powdered cow hooves (CH) for removing Ni2+ from aqueous solution was investigated through batch studies. The study was conducted to determine the effect of pH, adsorbent dosage, contact time, adsorbent particle size, and temperature on the adsorption capacity of CH. Equilibrium studies were conducted using initial concentration of Ni2+ ranging from 15 to 100 mgL−1 at 208, 308, and 318 K, respectively. The results of our investigation at room temperature indicated that maximum adsorption of Ni2+ occurred at pH 7 and contact time of 20 minutes. The thermodynamics of the adsorption of Ni2+ onto CH showed that the process was spontaneous and endothermic. Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm models were used to quantitatively analysed the equilibrium data. The equilibrium data were best fitted by Freundlich isotherm model, while the adsorption kinetics was well described by pseudo-second-order kinetic equation. The mean adsorption energy obtained from the D-R isotherm revealed that the adsorption process was dominated by physical adsorption. Powdered cow hooves could be utilized as a low-cost adsorbent at room temperature under the conditions of pH 7 and a contact time of 20 minutes for the removal of Ni(II) from aqueous solution.


2011 ◽  
Vol 148-149 ◽  
pp. 470-473
Author(s):  
Li Fang Zhang

The biosorption of Malachite Green from aqueous solution was investigated by using pretreated fungal biomass in a batch system. The effects of initial pH, NaCl concentration, initial dye concentration and temperature on dye biosorption were studied. The results showed that the pretreated fungal biomass exhibited higher dye removal at initial pH value of 5.0-6.0. The bosorption capacity was increased with the increasing temperature in studied temperature range. The Langmuir and Freundlich isotherm models were applied to experimental equilibrium data and the Langmuir model better described the equilibrium dye uptake than the Freundlich model. Thermodynamic studies revealed that the biosorption process was successful, spontaneous and endothermic in nature.


2017 ◽  
Vol 19 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Sławomir Wierzba

Abstract This study examined the biosorption process of Ni(II) and Zn(II) from an aqueous solution by dead biomass of Yarrowia lipolytica. Optimum biosorption conditions were determined as a function of pH, biomass dosage, contact time, and temperature. The biosorbent was characterized by FTIR, which indicated the participation of hydroxyl, carboxyl, amide and amine groups in the process of binding the metal ions. The results showed that the biosorption processes of both metal ions closely followed pseudo-second order kinetics. The equilibrium data of Ni(II) and Zn(II) ions at 20, 30 and 40°C fitted the Langmuir and Freundlich isotherm models. Langmuir isotherm provided a better fit to the equilibrium data, with a maximum biosorption capacity of the Y. lipolytica biomass for Ni(II) and Zn(II) of 30.12 and 44.44 mg/g respectively. The calculated thermodynamic parameters demonstrated that the biosorption of Ni(II) and Zn(II) ions onto the Y. lipolytica was feasible, spontaneous and endothermic.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1089
Author(s):  
Liliana Morales-Barrera ◽  
César Mateo Flores-Ortiz ◽  
Eliseo Cristiani-Urbina

The biosorption ability of Lemna gibba for removing Ni2+ and Zn2+ ions in aqueous batch systems, both individually and simultaneously, was examined. The influences of solution pH and initial single and binary metal concentrations on equilibrium Ni2+ and Zn2+ biosorption was explored. The optimal solution pH for Ni2+ and Zn2+ biosorption was 6.0, for both the single and binary metal systems. Ni2+ and Zn2+ biosorption capacities increased with increasing initial metal concentrations. The presence of Zn2+ ions more adversely affected the biosorption of Ni2+ ions in the binary metal systems than vice versa. The single and binary biosorption isotherms of Ni2+ and Zn2+ revealed that L. gibba’s affinity for Zn2+ ions was higher than that for Ni2+ ions. The Redlich–Peterson and Freundlich isotherm models fit well to the experimental equilibrium data of Ni2+ ions, whereas Redlich–Peterson and Langmuir models better described the equilibrium data of Zn2+ ions in single metal systems. The modified Sips isotherm model best fit the competitive biosorption data of Ni2+-Zn2+ on L. gibba. FTIR analyses suggest the involvement of hemicellulose and cellulose in the biosorption of Ni2+ and Zn2+. The presence of Ni2+ and Zn2+ on the L.gibba surface was validated by SEM-EDX.


2016 ◽  
Vol 75 (2) ◽  
pp. 427-438 ◽  
Author(s):  
Kulbhushan Samal ◽  
Kaustubha Mohanty ◽  
Chandan Das

In this study, a low-cost, sustainable biosorbent parthenium (P. hysterophorus L.) weed powder was investigated for the treatment of Pb contaminated wastewater. Physicochemical characteristics of the biosorbent were measured, namely, bulk density as 0.42 g cm−3, porosity as 45%, BET surface area as 20.79 m2 g−1, particle size as <125 μm, moisture content as 68% and point of zero charge as 5.6. The various parameters of biosorption process were examined. The maximum percentage removal of Pb ion achieved was 98.3% with 1.0 g L−1 of biosorbent dose for 50 mg L−1 initial Pb ion concentration at process condition of pH 4, temperature 30 °C (303 K), agitation speed 200 rpm and 150 min of equilibrium contact time. The equilibrium data were examined by various rate kinetics models and adsorption isotherm models. Sorption of Pb ion onto biosorbent was confirmed by Fourier transform infrared spectroscopy (FTIR) transmittance spectra and field-emission scanning electron microscopy and energy-dispersive X-ray (FESEM-EDX) analysis of native as well as Pb ion adsorbed biosorbent. The change in thermodynamic parameters, such as Gibbs free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) was calculated. The results suggest that biosorption process using parthenium (P. hysterophorus L.) weed powder as biosorbent was a spontaneous, feasible and efficient method for treatment of Pb-bearing wastewater.


2011 ◽  
Vol 80-81 ◽  
pp. 678-682
Author(s):  
Li Fang Zhang ◽  
Ying Ying Chen ◽  
Shu Juan Dai

In this study, biosorption of C. I. Acid Red 18 from aqueous solution was investigated by using acid treated biomass of Penicilium sp. in a batch system. The effects of initial pH, contact time, initial dye concentration and temperature on dye biosorption were investigated. Optimum pH for efficient dye biosorption was found to be 3.0 for acid treated biomass. The bosorption capacity was increased with the increasing temperature in studied temperature range. The Langmuir and Freundlich isotherm models were applied to experimental equilibrium data and the Langmuir model better described the equilibrium dye uptake than the Freundlich model. Thermodynamic studies revealed that the biosorption process was successful, spontaneous and endothermic in nature.


2001 ◽  
Vol 19 (3) ◽  
pp. 197-210 ◽  
Author(s):  
A. Hashem ◽  
Reda M. El-Shishtawy

The factors influencing the cationization of microcrystalline cellulose with 3-chloro-2-hydroxypropyl triethylammonium chloride in the presence of NaOH were investigated. The course of the reaction was followed by estimating the nitrogen content of the cationized product while its structural features were confirmed by IR analysis. The ability of cationized cellulose to adsorb anionic dyes, viz. Acid Orange 7, Direct Blue 75 and Direct Violet 31, was investigated at 25°C and 50°C. The equilibrium data obtained were fitted by the Langmuir and Freundlich isotherm models, allowing the corresponding adsorption parameters to be determined. The results showed that the adsorption capacity was dependent on the adsorbent, temperature, the nature of the dye and (to some extent) on van der Waals and hydrogen bonding. Cationized cellulose exhibited a much better adsorption capacity towards anionic dyes than cellulose.


Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 652 ◽  
Author(s):  
George Z. Kyzas ◽  
Athanasios C. Mitropoulos

In the present study, activated carbons (PAC) were hydrothermally prepared with an environmental friendly preparation route after pyrolysis from biomass (specifically from agricultural (potato) peels). The prepared biochars were activated with potassium hydroxide (chemical activities). The preparation route had a strong impact on the pore structure of PAC. In addition, surface chemistry was also affected by the preparation and activation process. The adsorbent materials were also characterized by Scanning Electron Microscopy. The prepared activated carbons were used as adsorbents for the removal of lead ions. Batch experiments were performed to investigate the effect of physico-chemical parameters, such as pH, contact time, initial metal concentration and temperature. Equilibrium data were analyzed using Langmuir and Freundlich isotherm models. The thermodynamic parameters such as the change of enthalpy (ΔH0), entropy (ΔS0) and Gibb’s free energy (ΔG0) of adsorption systems were also determined and evaluated.


2015 ◽  
Vol 754-755 ◽  
pp. 950-954
Author(s):  
Mohd Faisal Taha ◽  
Anis Suhaila Shuib ◽  
Maizatul Shima Shaharun ◽  
Azry Borhan

An attempt was made to study the potential of rice husk as an alternative cheap precursor for activated carbon to remove Ni2+ from aqueous solution. Rice husk was treated chemically (with NaOH) and physically (carbonization) to prepare rice husk based activated carbon (RHAC). The textural properties of RHAC, i.e. surface area (255 m2/g) and pore volume (0.17 cm2/g), were determined by N2 adsorption using Brunauer-Emmett-Teller (BET) surface analyzer. RHAC was also characterized for its morphology and its elemental compositions. The adsorption studies for the removal of Ni2+ from aqueous solution were carried out using different dosage of RHAC as adsorbent as a function of varied contact time. The concentration of Ni2+ was determined by atomic absorption spectrometer (AAS). The results obtained from adsorption studies indicate good potential of rice husk as a cheap precursor to produce activated carbon for the removal of Ni2+ from aqueous solution. The equilibrium data from adsorption studies fitted well the of Langmuir and Freundlich isotherm models.


2017 ◽  
Vol 36 (1-2) ◽  
pp. 521-548 ◽  
Author(s):  
AA Taha ◽  
AHE Moustafa ◽  
HH Abdel-Rahman ◽  
MMA Abd El-Hameed

This work presents a comparison between the biosorption of Hg (II) by raw almond shell and activated almond shell. Almond shell based activated carbon has been obtained by physicochemical activation. Batch biosorption results confirmed that, activating condition has a strong influence on the final biosorption process. The biosorbent was characterized using scanning electron microscopy and Fourier transform infrared spectroscopy. To optimize the biosorption conditions pH, adsorbent dose, initial concentration, contact time, stirring speed, and temperature on Hg (II) removal were studied. The optimum conditions for maximum Hg (II) was achieved at 20 and 10 min for raw almond shell and activated almond shell, respectively. The equilibrium data were described well by Langmuir, Freundlich, Dubinin–Radushkevich isotherm models and appling a test of model fitness. Best fit of Langmuir and Freundlich models were found for experimental data, which reveal the homogenous surface of raw almond shell and the heterogeneity of activated almond shell surface. The kinetic data had been divided into either pseudo first order or second order on the basis of the best fit obtained from calculations, confirmed by a test of kinetic validity. An industrial application was examined to improve high biosorption capacity of raw and activated almond shells toward Hg (II).


Sign in / Sign up

Export Citation Format

Share Document