scholarly journals Study for Predicting Land Surface Temperature (LST) Using Landsat Data: A Comparison of Four Algorithms

2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Elhadi K. Mustafa ◽  
Yungang Co ◽  
Guoxiang Liu ◽  
Mosbeh R. Kaloop ◽  
Ashraf A. Beshr ◽  
...  

The soft computing models used for predicting land surface temperature (LST) changes are very useful to evaluate and forecast the rapidly changing climate of the world. In this study, four soft computing techniques, namely, multivariate adaptive regression splines (MARS), wavelet neural network (WNN), adaptive neurofuzzy inference system (ANFIS), and dynamic evolving neurofuzzy inference system (DENFIS), are applied and compared to find the best model that can be used to predict the LST changes of Beijing area. The topographic change is considered in this study to accurately predict LST; furthermore, Landsat 4/5 TM and Landsat 8OLI_TIRS images for four years (1995, 2004, 2010, and 2015) are used to study the LST changes of the research area. The four models are assessed using statistical analysis, coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE) in the training and testing stages, and MARS is used to estimate the important variables that should be considered in the design models. The results show that the LST for the studied area increases by 0.28°C/year due to the urban changes in the study area. In addition, the topographic changes and previously recorded temperature changes have a significant influence on the LST prediction of the study area. Moreover, the results of the models show that the MARS, ANFIS, and DENFIS models can be used to predict the LST of the study area. The ANFIS model showed the highest performances in the training (R2 = 0.99, RMSE = 0.78°C, MAE = 0.55°C) and testing (R2 = 0.99, RMSE = 0.36°C, MAE = 0.16°C) stages; therefore, the ANFIS model can be used to predict the LST changes in the Beijing area. The predicted LST shows that the change in climate and urban area will affect the LST changes of the Beijing area in the future.

Author(s):  
D. B. Shah ◽  
M. R. Pandya ◽  
A. Gujrati ◽  
H. J. Trivedi ◽  
R. P. Singh

Land Surface Temperature (LST) is an important parameter in the land surface processes on regional and global scale. The Land Surface Temperature Diurnal (LSTD) cycle of different land cover is an excellent indicator of the surface processes and their interaction with planetary boundary layer. The Kalpana-1 very high resolution radiometer (VHRR) LST product is available with 30 minute spatial resolution and 0.1 degree temporal resolution. A study was carried out with an objective to determine the LSTD parameters directly from K1-VHRR monthly averaged LST observations over Indian landmass. In this analysis, a harmonic function is fitted to LSTD from the K1-VHRR observations, where cosine term describing the effect of sun and exponential term represents decay of LST during nighttime. Using LSTD parameters, one can directly know the temperature amplitude, residual temperature and time of maximum temperature for each pixel. The LSTD parameters fitting accuracy in root mean square error (RMSE) and coefficient of determination (R<sup>2</sup>) ranges between 0.5&ndash;2.5 K and 0.90&ndash;0.99 respectively for most of the pixels over Indian landmass. These LSTD parameters may bring new insight for estimation of thermal inertia and also useful in cloud screening algorithms.


2021 ◽  
Vol 13 (24) ◽  
pp. 5114
Author(s):  
Liuqing Yang ◽  
Kunyong Yu ◽  
Jingwen Ai ◽  
Yanfen Liu ◽  
Lili Lin ◽  
...  

Background: Urban green space (UGS) has been shown to play an important role in mitigating urban heat island (UHI) effects. In the context of accelerating urbanization, a better understanding of the landscape pattern mechanisms affecting the thermal environment is important for the improvement of the urban ecological environment. Methods: In this study, the relationship between land surface temperature (LST) and the spatial patterns of green space was analyzed using a bivariate spatial autocorrelation and spatial autoregression model in three seasons (summer, transition season (spring), and winter) with different grid scales in Fuzhou city. Results: Our results indicated that the LST in Fuzhou City has a significant spatial autocorrelation. The percentage of landscape and patch density area were negatively correlated with surface temperature. The results of our indicators differed according to the season, with population density and distance to the water indicators not being significant in the winter. The coefficient of determination was higher at the 510 m grid scale on this study’s scale. Conclusion: This study extends our understanding on the influence of UHI effects after accounting for different seasonal and spatial scale factors. It also provides a reference for urban planners to mitigate heat islands in the future.


2021 ◽  
Vol 13 (6) ◽  
pp. 1186
Author(s):  
Saiping Xu ◽  
Qianjun Zhao ◽  
Kai Yin ◽  
Guojin He ◽  
Zhaoming Zhang ◽  
...  

Land surface temperature (LST) is a critical parameter of surface energy fluxes and has become the focus of numerous studies. LST downscaling is an effective technique for supplementing the limitations of the coarse-resolution LST data. However, the relationship between LST and other land surface parameters tends to be nonlinear and spatially nonstationary, due to spatial heterogeneity. Nonlinearity and spatial nonstationarity have not been considered simultaneously in previous studies. To address this issue, we propose a multi-factor geographically weighted machine learning (MFGWML) algorithm. MFGWML utilizes three excellent machine learning (ML) algorithms, namely extreme gradient boosting (XGBoost), multivariate adaptive regression splines (MARS), and Bayesian ridge regression (BRR), as base learners to capture the nonlinear relationships. MFGWML uses geographically weighted regression (GWR), which allows for spatial nonstationarity, to fuse the three base learners’ predictions. This paper downscales the 30 m LST data retrieved from Landsat 8 images to 10 m LST data mainly based on Sentinel-2A images. The results show that MFGWML outperforms two classic algorithms, namely thermal image sharpening (TsHARP) and the high-resolution urban thermal sharpener (HUTS). We conclude that MFGWML combines the advantages of multiple regression, ML, and GWR, to capture the local heterogeneity and obtain reliable and robust downscaled LST data.


2021 ◽  
Vol 13 (18) ◽  
pp. 3645
Author(s):  
Kai Tang ◽  
Hongchun Zhu ◽  
Ping Ni

Land surface temperature (LST) is one of the crucial parameters in the physical processes of the Earth. Acquiring LST images with high spatial and temporal resolutions is currently difficult because of the technical restriction of satellite thermal infrared sensors. Downscaling LST from coarse to fine spatial resolution is an effective means to alleviate this problem. A spatial random forest downscaling LST method (SRFD) was proposed in this study. Abundant predictor variables—including land surface reflection data, remote sensing spectral indexes, terrain factors, and land cover type data—were considered and applied for feature selection in SRFD. Moreover, the shortcoming of only focusing on information from point-to-point in previous statistics-based downscaling methods was supplemented by adding the spatial feature of LST. SRFD was applied to three different heterogeneous regions and compared with the results from three classical or excellent methods, including thermal image sharpening algorithm, multifactor geographically weighted regression, and random forest downscaling method. Results show that SRFD outperforms other methods in vision and statistics due to the benefits from the supplement of the LST spatial feature. Specifically, compared with RFD, the second-best method, the downscaling results of SRFD are 10% to 24% lower in root-mean-square error, 5% to 20% higher in the coefficient of determination, 11% to 25% lower in mean absolute error, and 4% to 17% higher in structural similarity index measure. Hence, we conclude that SRFD will be a promising LST downscaling method.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 486
Author(s):  
Manish Kumar ◽  
Abidhan Bardhan ◽  
Pijush Samui ◽  
Jong Wan Hu ◽  
Mosbeh R. Kaloop

Uncertainty and variability are inherent to pile design and consequently, there have been considerable researches in quantifying the reliability or probability of failure of structures. This paper aims at examining and comparing the applicability and adaptability of Minimax Probability Machine Regression (MPMR), Emotional Neural Network (ENN), Group Method of Data Handling (GMDH), and Adaptive Neuro-Fuzzy Inference System (ANFIS) in the reliability analysis of pile embedded in cohesionless soil and proposes an AI-based prediction method for bearing capacity of pile foundation. To ascertain the homogeneity and distribution of the datasets, Mann–Whitney U (M–W) and Anderson–Darling (AD) tests are carried out, respectively. The performance of the developed soft computing models is ascertained using various statistical parameters. A comparative study is implemented among reliability indices of the proposed models by employing First Order Second Moment Method (FOSM). The results of FOSM showed that the ANFIS approach outperformed other models for reliability analysis of bearing capacity of pile and ENN is the worst performing model. The value of R2 for all the developed models is close to 1. The best RMSE value is achieved for the training phase of the ANFIS model (0 in training and 2.13 in testing) and the poorest for the ENN (2.03 in training and 31.24 in testing) model. Based on the experimental results of reliability indices, the developed ANFIS model is found to be very close to that computed from the original data.


Author(s):  
Georgiana Grigoraș ◽  
Bogdan Urițescu

Abstract The aim of the study is to find the relationship between the land surface temperature and air temperature and to determine the hot spots in the urban area of Bucharest, the capital of Romania. The analysis was based on images from both moderate-resolution imaging spectroradiometer (MODIS), located on both Terra and Aqua platforms, as well as on data recorded by the four automatic weather stations existing in the endowment of The National Air Quality Monitoring Network, from the summer of 2017. Correlation coefficients between land surface temperature and air temperature were higher at night (0.8-0.87) and slightly lower during the day (0.71-0.77). After the validation of satellite data with in-situ temperature measurements, the hot spots in the metropolitan area of Bucharest were identified using Getis-Ord spatial statistics analysis. It has been achieved that the “very hot” areas are grouped in the center of the city and along the main traffic streets and dense residential areas. During the day the "very hot spots” represent 33.2% of the city's surface, and during the night 31.6%. The area where the mentioned spots persist, falls into the "very hot spot" category both day and night, it represents 27.1% of the city’s surface and it is mainly represented by the city center.


2021 ◽  
Vol 1825 (1) ◽  
pp. 012021
Author(s):  
Nasrullah Zaini ◽  
Muhammad Yanis ◽  
Marwan ◽  
Muhammad Isa ◽  
Freek van der Meer

Sign in / Sign up

Export Citation Format

Share Document