scholarly journals Network Pharmacology Study of Heat-Clearing and Detoxifying Traditional Chinese Medicine for Alzheimer's Disease

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Hongxing Li ◽  
Xinyue Zhang ◽  
Lili Gu ◽  
Ningzi Wu ◽  
Lingxi Zhang ◽  
...  

This study aims to explore the possible homologous mechanism of 7 frequently‐used herbs for heat-clearing and detoxification in traditional Chinese medicine (HDTCM) for treating Alzheimer's disease (AD), one of the most common types of dementia, based on network pharmacology. Herbs that satisfied the criteria of containing chlorogenic acid, relating to AD and aligning with HDTCM, were simultaneously collected to determine whether they have anti-AD effect based on a survey of the literature. Herb-ingredient-target-disease networks were constructed by collecting information from the TCMSP and GeneCards public databases. The common targets of the herbs and AD were identified for conducting a Gene Ontology (GO) analyses and a Reactome pathway enrichment analysis. The results showed that PTGS1, IL-6, CASP3, and VEGFA were the predicted key gene targets. The IL-4 and IL-13 signaling pathway, the ESR-mediated signaling pathway, and the extranuclear estrogen signaling pathway were the significant pathways associated with the 7 herbs. This study revealed that the analogous anti-AD mechanism of the 7 herbs of HDTCM may be associated with anti-inflammation, which is a common effect of the chlorogenic acid and quercetin components.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yi Kuan Du ◽  
Yue Xiao ◽  
Shao Min Zhong ◽  
Yi Xing Huang ◽  
Qian Wen Chen ◽  
...  

Alzheimer’s disease is a common neurodegenerative disease in the elderly. This study explored the curative effect and possible mechanism of Acori graminei rhizoma on Alzheimer’s disease. In this paper, 8 active components of Acori graminei rhizoma were collected by consulting literature and using the TCMSP database, and 272 targets were screened using the PubChem and Swiss Target Prediction databases. Introduce it into the software of Cytoscape 3.7.2 and establish the graph of “drug-active ingredient-ingredient target.” A total of 276 AD targets were obtained from OMIM, Gene Cards, and DisGeNET databases. Import the intersection targets of drugs and diseases into STRING database for enrichment analysis, and build PPI network in the Cytoscape 3.7.2 software, whose core targets involve APP, AMPK, NOS3, etc. GO analysis and KEGG analysis showed that there were 195 GO items and 30 AD-related pathways, including Alzheimer’s disease pathway, serotonin synapse, estrogen signaling pathway, dopaminergic synapse, and PI3K-Akt signaling pathway. Finally, molecular docking was carried out to verify the binding ability between Acori graminei rhizoma and core genes. Our results predict that Acori graminei rhizoma can treat AD mainly by mediating Alzheimer’s signal pathway, thus reducing the production of Aβ, inhibiting the hyperphosphorylation of tau protein, regulating neurotrophic factors, and regulating the activity of kinase to change the function of the receptor.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Chunli Piao ◽  
Qi Zhang ◽  
De Jin ◽  
Li Wang ◽  
Cheng Tang ◽  
...  

Diabetic nephropathy (DN) is one of the most common complications of diabetes mellitus. Owing to its complicated pathogenesis, no satisfactory treatment strategies for DN are available. Milkvetch Root is a common traditional Chinese medicine (TCM) and has been extensively used to treat DN in clinical practice in China for many years. However, due to the complexity of botanical ingredients, the exact pharmacological mechanism of Milkvetch Root in treating DN has not been completely elucidated. The aim of this study was to explore the active components and potential mechanism of Milkvetch Root by using a systems pharmacology approach. First, the components and targets of Milkvetch Root were analyzed by using the Traditional Chinese Medicine Systems Pharmacology database. We found the common targets of Milkvetch Root and DN constructed a protein-protein interaction (PPI) network using STRING and screened the key targets via topological analysis. Enrichment of Gene Ontology (GO) pathways and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed. Subsequently, major hubs were identified and imported to the Database for Annotation, Visualization and Integrated Discovery for pathway enrichment analysis. The binding activity and targets of the active components of Milkvetch Root were verified by using the molecular docking software SYBYL. Finally, we found 20 active components in Milkvetch Root. Moreover, the enrichment analysis of GO and KEGG pathways suggested that AGE-RAGE signaling pathway, HIF-1 signaling pathway, PI3K-Akt signaling pathway, and TNF signaling pathway might be the key pathways for the treatment of DN; more importantly, 10 putative targets of Milkvetch Root (AKT1, VEGFA, IL-6, PPARG, CCL2, NOS3, SERPINE1, CRP, ICAM1, and SLC2A) were identified to be of great significance in regulating these biological processes and pathways. This study provides an important scientific basis for further elucidating the mechanism of Milkvetch Root in treating DN.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yu-nan Liu ◽  
Xiao-jing Hu ◽  
Bei Liu ◽  
Yu-jie Shang ◽  
Wen-ting Xu ◽  
...  

Endometriosis is a chronic estrogen-dependent inflammatory disorder that negatively affects the quality of life in women. The Wenjing decoction (WJD) is a traditional Chinese medicine that has been shown to have a therapeutic effect on endometriosis. Our study systematically explored the mechanism of WJD against endometriosis using a network pharmacology approach. Potentially bioactive compounds of WJD and their possible targets were retrieved from the Traditional Chinese Medicine System Pharmacology Database and Analysis Platform. The protein-protein interaction network and herbs-compounds-genes multinetwork were constructed using Cytoscape for visualization. Subsequently, the signaling pathways of common targets were retrieved from the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, and molecular docking was performed using PyRx software. In total, 48 common targets were screened, such as IL6 and ESR1, which were related to inflammation and the endocrine system. The top five bioactive compounds were quercetin, kaempferol, wogonin, beta-sitosterol, and stigmasterol. KEGG enrichment analysis revealed 65 pathways containing inflammatory- and endocrine-related signaling pathways, such as the “TNF signaling pathway” and the “estrogen signaling pathway.” Taken together, the results of our network pharmacology analysis predicted that certain active ingredients of WJD might treat endometriosis by regulating inflammation and/or endocrine, which provided references for further understanding and exploration of WJD on endometriosis.


2021 ◽  
Author(s):  
Xue Bai ◽  
Yibo Tang ◽  
Qiang Li ◽  
Guimin Liu ◽  
Dan Liu ◽  
...  

Abstract Background: Male infertility (MI) affects almost 5% adult men worldwide, and 75% of these cases are unexplained idiopathic. There are limitations in the current treatment due to the unclear mechanism of MI, which highlight the urgent need for a more effective strategy or drug. Traditional Chinese Medicine (TCM) prescriptions have been used to treat MI for thousands of years, but their molecular mechanism is not well defined. Methods: Aiming at revealing the molecular mechanism of TCM prescriptions on MI, a comprehensive strategy integrating data mining, network pharmacology, and molecular docking verification was performed. Firstly, we collected 289 TCM prescriptions for treating MI from National Institute of TCM Constitution and Preventive Medicine for 6 years. Then, Core Chinese Materia Medica (CCMM), the crucial combination of TCM prescriptions, was obtained by the TCM Inheritance Support System from China Academy of Chinese Medical Sciences. Next, the components and targets of CCMM in TCM prescriptions and MI-related targets were collected and analyzed through network pharmacology approach.Results: The results showed that the molecular mechanism of TCM prescriptions for treating MI are regulating hormone, inhibiting apoptosis, oxidant stress and inflammatory. Estrogen signaling pathway, PI3K-Akt signaling pathway, HIF-1 signaling pathway, and TNF signaling pathway are the most important signaling pathways. Molecular docking experiments were used to further validate network pharmacology results. Conclusions: This study not only discovers CCMM and the molecular mechanism of TCM prescriptions for treating MI, but may be helpful for the popularization and application of TCM treatment.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Qi Jin ◽  
Xiao-Feng Hao ◽  
Li-Ke Xie ◽  
Jing Xu ◽  
Mei Sun ◽  
...  

Background. Diabetic retinopathy (DR) includes a series of typical lesions affected by retinal microvascular damage caused by diabetes mellitus (DM), which not only seriously damages the vision, affecting the life’s quality of patients, but also brings a considerable burden to the family and society. Astragalus Membranaceus (AM) is a commonly used medicine in clinical therapy of eye disorders in traditional Chinese medicine (TCM). In recent years, it is also used for treating DR, but the specific mechanism is unclear. Therefore, this study explores the potential mechanism of AM in DR treatment by using network pharmacology. Methods. Based on the oral bioavailability (OB) and drug likeness (DL) of two ADME (absorption, distribution, metabolism, excretion) parameters, Traditional Chinese Medicine Systems Pharmacology Database (TCMSP), Swiss Target Prediction platform, GeneCards, and OMIM database were used to predict and screen the active compounds of AM, the core targets of AM in DR treatment. The Metascape data platform was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on the core targets. Results. 24 active compounds were obtained, such as quercetin, kaempferol, and astragaloside IV. There were 169 effective targets of AM in DR treatment, and the targets were further screened and finally, 38 core targets were obtained, such as VEGFA, AKT1, and IL-6. EGFR tyrosine kinase inhibitor resistance, AGE-RAGE signaling pathway in diabetic complications, PI3K-Akt signaling pathway, and other metabolic pathways participated in oxidative stress, cell apoptosis, angiogenesis signal transduction, inflammation, and other biological processes. Conclusion. AM treats DR through multiple compounds, multiple targets, and multiple pathways. AM may play a role in the treatment of DR by targeting VEGFA, AKT1, and IL-6 and participating in oxidative stress, angiogenesis, and inflammation.


Molecules ◽  
2019 ◽  
Vol 24 (8) ◽  
pp. 1499 ◽  
Author(s):  
Yi-wei Sun ◽  
Yue Wang ◽  
Zi-feng Guo ◽  
Kai-cheng Du ◽  
Da-li Meng

Ohwia caudata (OC)—a traditional Chinese medicine (TCM)—has been reported to have large numbers of flavonoids, alkaloids, and triterpenoids. The previous studies on OC for treating Alzheimer’s disease (AD) only focused on single targets and its mechanisms, while no report had shown about the synergistic mechanism of the constituents from OC related to their potential treatment on dementia in any database. This study aimed to predict the bioactive targets constituents and find potential compounds from OC with better oral bioavailability and blood–brain barrier permeability against AD, by using a system network level-based in silico approach. The results revealed that two new flavonoids, and another 26 compounds isolated from OC in our lab, were highly connected to AD-related signaling pathways and biological processes, which were confirmed by compound–target network, Gene Ontology (GO) analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, respectively. Predicted by the virtual screening and various network pharmacology methods, we found the multiple mechanisms of OC, which are effective for alleviating AD symptoms through multiple targets in a synergetic way.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Chun-Li Piao ◽  
Jin-Li Luo ◽  
De Jin ◽  
Cheng Tang ◽  
Li Wang ◽  
...  

Abstract Introduction Radix Salviae (Dan-shen in pinyin), a classic Chinese herb, has been extensively used to treat diabetic retinopathy in clinical practice in China for many years. However, the pharmacological mechanisms of Radix Salviae remain vague. The aim of this study was to decrypt the underlying mechanisms of Radix Salviae in the treatment of diabetic retinopathy using a systems pharmacology approach. Methods A network pharmacology-based strategy was proposed to elucidate the underlying multi-component, multi-target, and multi-pathway mode of action of Radix Salviae against diabetic retinopathy. First, we collected putative targets of Radix Salviae based on the Traditional Chinese Medicine System Pharmacology database and a network of the interactions among the putative targets of Radix Salviae and known therapeutic targets of diabetic retinopathy was built. Then, two topological parameters, “degree” and “closeness certainty” were calculated to identify the major targets in the network. Furthermore, the major hubs were imported to the Database for Annotation, Visualization and Integrated Discovery to perform a pathway enrichment analysis. Results A total of 130 nodes, including 18 putative targets of Radix Salviae, were observed to be major hubs in terms of topological importance. The results of pathway enrichment analysis indicated that putative targets of Radix Salviae mostly participated in various pathways associated with angiogenesis, protein metabolism, inflammatory response, apoptosis, and cell proliferation. The putative targets of Radix Salviae (vascular endothelial growth factor, matrix metalloproteinases, plasminogen, insulin-like growth factor-1, and cyclooxygenase-2) were recognized as active factors involved in the main biological functions of treatment, which implied that these were involved in the underlying mechanisms of Radix Salviae on diabetic retinopathy. Conclusions Radix Salviae could alleviate diabetic retinopathy via the molecular mechanisms predicted by network pharmacology. This research demonstrates that the network pharmacology approach can be an effective tool to reveal the mechanisms of traditional Chinese medicine from a holistic perspective.


2021 ◽  
Vol 22 (7) ◽  
pp. 3612
Author(s):  
Peng Zeng ◽  
Xiao-Ming Wang ◽  
Chao-Yuan Ye ◽  
Hong-Fei Su ◽  
Qing Tian

Alzheimer’s disease (AD) is a growing concern in modern society, and effective drugs for its treatment are lacking. Uncaria rhynchophylla (UR) and its main alkaloids have been studied to treat neurodegenerative diseases such as AD. This study aimed to uncover the key components and mechanism of the anti-AD effect of UR alkaloids through a network pharmacology approach. The analysis identified 10 alkaloids from UR based on HPLC that corresponded to 90 anti-AD targets. A potential alkaloid target-AD target network indicated that corynoxine, corynantheine, isorhynchophylline, dihydrocorynatheine, and isocorynoxeine are likely to become key components for AD treatment. KEGG pathway enrichment analysis revealed the Alzheimers disease (hsa05010) was the pathway most significantly enriched in alkaloids against AD. Further analysis revealed that 28 out of 90 targets were significantly correlated with Aβ and tau pathology. These targets were validated using a Gene Expression Omnibus (GEO) dataset. Molecular docking studies were carried out to verify the binding of corynoxine and corynantheine to core targets related to Aβ and tau pathology. In addition, the cholinergic synapse (hsa04725) and dopaminergic synapse (hsa04728) pathways were significantly enriched. Our findings indicate that UR alkaloids directly exert an AD treatment effect by acting on multiple pathological processes in AD.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Haoxian Wang ◽  
Jihong Zhang ◽  
Qinqin Zhu ◽  
Xianyun Fu ◽  
Chenjie Li

Aim. This study aimed to predict the key targets and endocrine mechanisms of Guizhi Fuling Wan (GZFLW) in treating adenomyosis (AM) through network pharmacology, molecular docking, and animal experiment verification. Methods. The related ingredients and targets of GZFLW in treating AM were screened out using TCMSP, BATMAN-TCM, SwissTargetPrediction, and PubChem Database. Then, the protein-protein interaction (PPI) analysis and the network of compound-hub targets were constructed. At the same time, the key targets were uploaded to the Metascape Database for KEGG pathway enrichment analysis. After that, the molecular docking technology of the main active components and hub targets was performed. Furthermore, animal experiments were used to verify the results of network pharmacology analysis. Results. A total of 55 active ingredients of GZFLW and 44 overlapping targets of GZFLW in treating AM were obtained. After screening, 25 hub targets were collected, including ESR1, EGF, and EGFR. Then, the KEGG pathway enrichment analysis results indicated that the endocrine therapeutic mechanism of GZFLW against AM is mainly associated with the estrogen signaling pathway, endocrine resistance, and an EGFR tyrosine kinase signaling pathway. Then, molecular docking showed that the significant compounds of GZFLW had a strong binding ability with ERα and EGFR. More importantly, the animal experiments confirmed that the GZFLW could downregulate the abnormal infiltration of the endometrial epithelium into the myometrium and had no interference with the normal sexual cycle. This effect may be directly related to intervening the local estrogen signaling pathway of the endometrial myometrial interface (EMI). It may also be associated with the myometrium cells’ estrogen resistance via GPER/EGFR signaling pathway. Conclusion. The endocrine mechanism of GZFLW in treating AM was explored based on network pharmacology, molecular docking, and animal experiments, which provided a theoretical basis for the clinical application of GZFLW.


2020 ◽  
Author(s):  
Li-ying Jia ◽  
Jia Li ◽  
Gui-yun Cao ◽  
Zhao-qing Meng ◽  
Lu Gan ◽  
...  

Abstract Background SheXiang XinTongNing, a commercially available Chinese patent medicine, has been widely used in the treatment of coronary heart disease. However, the mechanisms of SheXiang XinTongNing are still unclear. The aim of this study was to investigate the pharmacological mechanisms of SheXiang XinTongNing against coronary heart disease via network analysis. Method The traditional Chinese medicine system pharmacology analysis platform was used to screen the potential active constituents of the six traditional Chinese medicines in SheXiang XinTongNing, and the potential targets were obtained from PharmMapper. The genome annotation database platform was used to screen the candidate targets related to coronary heart disease. Then the drug-components-targets network and protein interaction network were built by Cytoscape 3.6.0 software. Further, GO bio-functional enrichment analysis and KEGG pathway enrichment analysis were performed through annotation, visualization and integrated discovery database. Results Results showed that the drugs-components-targets network contains 104 targets and 62 key components. The protein interaction network consisted of 107 nodes; key targets included Bcl2l1, IGF1, SRC, CASP3, et al. Functionally, the candidate targets were significantly associated with multiple pathways such as PI3K-Akt signaling pathway, MAPK signaling pathway, Ras signaling pathway, FoxO signaling pathway, Endocrine resistance. Given the above, the pharmacological activities of SheXiang XinTongNing may be predominantly related to several factors such as cell apoptosis, inflammation and angiogenesis. Conclusion XTN can effectively attenuate the symptoms of coronary heart disease through diverse pathways. The research proves that network pharmacology can successfully reveal the mechanisms of traditional Chinese medicine in a holistic view. Our systematic analysis lays a foundation for further studying.


Sign in / Sign up

Export Citation Format

Share Document