scholarly journals Paeonol Attenuates Methotrexate-Induced Cardiac Toxicity in Rats by Inhibiting Oxidative Stress and Suppressing TLR4-Induced NF-κB Inflammatory Pathway

2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Abdulla Y. Al-Taher ◽  
Mohamed A. Morsy ◽  
Rehab A. Rifaai ◽  
Nagwa M. Zenhom ◽  
Seham A. Abdel-Gaber

Methotrexate (MTX) is a commonly used chemotherapeutic agent. Oxidative stress and inflammation have been proved in the development of MTX toxicity. Paeonol is a natural phenolic compound with various pharmacological activities including antioxidant and anti-inflammatory properties. The aim of the present study was to evaluate the protective effect of paeonol against MTX-induced cardiac toxicity in rats and to evaluate the various mechanisms that underlie this effect. Paeonol (100 mg/kg) was administered orally for 10 days. MTX cardiac toxicity was induced at the end of the fifth day of the experiment, with or without paeonol pretreatment. MTX-induced cardiac damage is evidenced by a distortion in the normal cardiac histological structure, with significant oxidative and nitrosative stress shown as a significant increase in NADPH oxidase-2, malondialdehyde, and nitric oxide levels along with a decrease in reduced glutathione concentration and superoxide dismutase activity compared to the control group. MTX-induced inflammatory effects are evidenced by the increased cardiac toll-like receptor 4 (TLR4) mRNA expression and protein level as well as increased cardiac tumor necrosis factor- (TNF-) α and interleukin- (IL-) 6 levels along with increased nuclear factor- (NF-) κB/p65 immunostaining. MTX increased apoptosis as shown by the upregulation of cardiac caspase 3 immunostaining. Paeonol was able to correct the oxidative and nitrosative stress as well as the inflammatory and apoptotic parameters and restore the normal histological structure compared to MTX alone. In conclusion, paeonol has a protective effect against MTX-induced cardiac toxicity through inhibiting oxidative and nitrosative stress and suppressing the TLR4/NF-κB/TNF-α/IL-6 inflammatory pathway, as well as causing an associated reduction in the proapoptotic marker, caspase 3.

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zhen-Dong Zhang ◽  
Ya-Jun Yang ◽  
Xi-Wang Liu ◽  
Zhe Qin ◽  
Shi-Hong Li ◽  
...  

Aspirin eugenol ester (AEE) is a new pharmaceutical compound esterified by aspirin and eugenol, which has anti-inflammatory, antioxidant, and other pharmacological activities. This study is aimed at identifying the protective effect of AEE against H2O2-induced apoptosis in rat adrenal pheochromocytoma PC12 cells and the possible mechanisms. The results of cell viability assay showed that AEE could increase the viability of PC12 cells stimulated by H2O2, while AEE alone had no significant effect on the viability of PC12 cells. Compared with the control group, the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were significantly decreased, and the content of malondialdehyde (MDA) was significantly increased in the H2O2 group. By AEE pretreatment, the level of MDA was reduced and the levels of SOD, CAT, and GSH-Px were increased in H2O2-stimulated PC12 cells. In addition, AEE could reduce the apoptosis of PC12 cells induced by H2O2 via reducing superoxide anion, intracellular ROS, and mitochondrial ROS (mtROS) and increasing the levels of mitochondrial membrane potential (ΔΨm). Furthermore, the results of western blotting showed that compared with the control group, the expression of p-PI3K, p-Akt, and Bcl-2 was significantly decreased, while the expression of Caspase-3 and Bax was significantly increased in the H2O2 group. In the AEE group, AEE pretreatment could upregulate the expression of p-PI3K, p-Akt, and Bcl-2 and downregulate the expression of Caspase-3 and Bax in PC12 cells stimulated with H2O2. The silencing of PI3K with shRNA and its inhibitor-LY294002 could abrogate the protective effect of AEE in PC12 cells. Therefore, AEE has a protective effect on H2O2-induced PC12 cells by regulating the PI3K/Akt signal pathway to inhibit oxidative stress.


2020 ◽  
Vol 20 (7) ◽  
pp. 1117-1132
Author(s):  
Abdelaziz M. Hussein ◽  
Elsayed A. Eid ◽  
Ismaeel Bin-Jaliah ◽  
Medhat Taha ◽  
Lashin S. Lashin

Background and Aims: In the current work, we studied the effects of exercise and stevia rebaudiana (R) extracts on diabetic cardiomyopathy (DCM) in type 2 diabetic rats and their possible underlying mechanisms. Methods: : Thirty-two male Sprague Dawley rats were randomly allocated into 4 equal groups; a) normal control group, b) DM group, type 2 diabetic rats received 2 ml oral saline daily for 4 weeks, c) DM+ Exercise, type 2 diabetic rats were treated with exercise for 4 weeks and d) DM+ stevia R extracts: type 2 diabetic rats received methanolic stevia R extracts. By the end of the experiment, serum blood glucose, HOMA-IR, insulin and cardiac enzymes (LDH, CK-MB), cardiac histopathology, oxidative stress markers (MDA, GSH and CAT), myocardial fibrosis by Masson trichrome, the expression of p53, caspase-3, α-SMA and tyrosine hydroxylase (TH) by immunostaining in myocardial tissues were measured. Results: T2DM caused a significant increase in blood glucose, HOMA-IR index, serum CK-MB and LDH, myocardial damage and fibrosis, myocardial MDA, myocardial α-SMA, p53, caspase-3, Nrf2 and TH density with a significant decrease in serum insulin and myocardial GSH and CAT (p< 0.05). On the other hand, treatment with either exercise or stevia R extracts significantly improved all studied parameters (p< 0.05). Moreover, the effects of stevia R was more significant than exercise (p< 0.05). Conclusion: Both exercise and methanolic stevia R extracts showed cardioprotective effects against DCM and Stevia R offered more cardioprotective than exercise. This cardioprotective effect of these lines of treatment might be due to attenuation of oxidative stress, apoptosis, sympathetic nerve density and fibrosis and upregulation of the antioxidant transcription factor, Nrf2.


2021 ◽  
Vol 18 ◽  
Author(s):  
Yuan Li ◽  
Lan Chu ◽  
Chunfeng Liu ◽  
Zongyi Zha ◽  
Yuanlu Shu

Aim: This study investigated the protective effect of dimethyl fumarate (DMF) in rats by mediating GSK3-β/Nrf2 using the middle cerebral artery embolization reperfusion (MCAO/R) rat model. Background: After an acute ischemic stroke (AIS), oxidative stress occurs. Dimethyl fumarate (DMF), a nuclear factor-E2-related factor 2 (Nrf2) activator, approved by the US Food and Drug Administration (FDA), was observed to regulate the Nrf2 pathway by acting as an anti-oxidative stress agent; however, whether this agent is involved in inhibiting GSK-3β remains to be established. Methods: DMF model was used to explore the effects of GSK-3β on Nrf2 expression level, Nrf2-ARE binding activity and Nrf2/ARE downstream expression level of anti-oxidant stress protein in Cerebral ischemia-reperfusion injury (CIRI). 60 rats were randomly divided into Sham group, MCAO/R group, solvent control group (DMSO group) and DMF treatment group, with 15 rats in each group. The MCAO/R, DMSO and DMF groups were considered in the MCAO/R model using the modified thread embolization method. In contrast, the Sham group was only anaesthetized and disinfected, and tissue muscle was dissected without inserting suture emboli. DMF group was gavaged with 45mg/kg per day of DMF, DMSO control group was gavaged with DMSO of equal volume, while MCAO/R group was only modeled without any intragastric treatment. The rats were treated seven days after the operation, and a neurological function Longa score was estimated. The rats were sacrificed seven days later, and the infarct volume was assessed by TTC staining. Hematoxylin-eosin (HE) staining was used to observe the pathological changes in rat brain tissue. Nissl staining was used to observe the expression of neurons in the infarcted cortex. Western blotting (WB) was used to observe the protein expression levels of glycogen synthase kinase 3β(GSK-3β), nuclear factor E2-related factor 2 (Nrf2), downstream heme oxygenase 1 (HO1) and NADPH quinone oxidoreductase 1 (NQO1) in four groups. The expression levels of GSK-3β and Nrf2 in the four groups were observed by immunohistochemistry and immunofluorescence. Results: (1) The Longa score of the MCAO/R, DMSO and DMF groups was found to be higher compared to the Sham group, indicating successful operation. The Longa score of the DMF group was lower than that of the other three groups 4-7 days after surgery (P<0.05). (2) HE and Nissl staining showed that the DMF group had lower neuron necrosis and higher gliosis compared to the control groups. (3) TTC staining results showed that the infarct volume of the DMF group was significantly smaller than the MCAO/R and DMSO groups. (4) Protein results showed that the GSK-3β expression in the DMF group was lower than that in all groups, while the expression of Nrf2, HO1 and NQO1 was higher compared to other groups. Conclusion: DMF can reduce neurological deficits and infarct size in the MCAO/R model. The protective effect may be related to decreased GSK-3β expression and increased Nrf2 expression, which may play a role in anti-oxidative stress.


2018 ◽  
Vol 10 (2) ◽  
Author(s):  
Alexander Franz ◽  
Laura Joseph ◽  
Constantin Mayer ◽  
Jan-Frieder Harmsen ◽  
Holger Schrumpf ◽  
...  

Osteoarthritis (OA) is the most frequently diagnosed joint disorder worldwide with increasing prevalence and crucial impact on the quality of life of affected patients through chronic pain, decreasing mobility and invalidity. Although some risk factors, such as age, obesity and previous joint injury are well established, the exact pathogenesis of OA on a cellular and molecular level remains less understood. Today, the role of nitrosative and oxidative stress has not been investigated conclusively in the pathogenesis of OA yet. Therefore, the objective of this study was to identify biological substances for oxidative and nitrosative stress, which mirror the degenerative processes in an osteoarthritic joint. 69 patients suffering from a diagnosed knee pain participated in this study. Based on the orthopedic diagnosis, patients were classified into an osteoarthritis group (OAG, n=24) or in one of two control groups (meniscopathy, CG1, n=11; anterior cruciate ligament rupture, CG2, n=34). Independently from the study protocol, all patients underwent an invasive surgical intervention which was used to collect samples from the synovial membrane, synovial fluid and human serum. Synovial biopsies were analyzed histopathologically for synovitis (Krenn-Score) and immunohistochemically for detection of end products of oxidative (8-isoprostane F2α) and nitrosative (3-nitrotyrosine) stress. Additionally, the fluid samples were analyzed for 8-isoprostane F2α and 3-nitrotyrosine by competitive ELISA method. The analyzation of inflammation in synovial biopsies revealed a slight synovitis in all three investigated groups. Detectable concentrations of 3-nitrotyrosine were reported in all three investigated groups without showing any significant differences between the synovial biopsies, fluid or human serum. In contrast, significant increased concentrations of 8-isoprostane F2α were detected in OAG compared to both control groups. Furthermore, our data showed a significant correlation between the histopathological synovitis and oxidative stress in OAG (r=0.728, P<0.01). There were no significant differences between the concentrations of 8-isoprostane F2α in synovial fluid and human serum. The findings of the current study support the hypothesis that oxidative and nitrosative stress are components of the multi-factory pathophysiological formation of OA. It seems reasonable that an inflammatory process in the synovial membrane triggers the generation of oxidative and nitrosative acting substances which can lead to a further degradation of the articular cartilage. Based on correlations between the observed degree of inflammation and investigated biomarkers, especially 8-isoprostane F2α seems to be a novel candidate biomarker for OA. However, due to the finding that also both control groups showed increased concentrations of selected biomarkers, future studies have to validate the diagnostic potential of these biomarkers in OA and in related conditions of the knee joint.


2021 ◽  
Author(s):  
Yajun Chen ◽  
Lei Wang ◽  
Tianjia Liu ◽  
Zhidong Qiu ◽  
Ye Qiu ◽  
...  

We investigated the protective effect of PGP against DOX-induced cardiotoxicity in vitro and in vivo. PGP increases H9C2 cell viability and inhibits apoptosis, alleviating DOX-induced myocardial oxidative stress-related cardiotoxicity.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xiang Wang ◽  
Tongjuan Tang ◽  
Mengting Zhai ◽  
Ruirui Ge ◽  
Liang Wang ◽  
...  

Objectives. Ling-Gui-Zhu-Gan decoction (LGZGD) is a potentially effective treatment for heart failure, and it showed significant anti-inflammatory potential in our previous studies. However, its ability to ameliorate heart failure through regulation of oxidative stress response is still unknown. This study was aimed to investigate the protective effect of LGZGD-containing serum on H2O2-induced oxidative injury in H9c2 cells and explore the underlying mechanism. Methods. Eighteen rats were randomly divided into two groups: the blank control group and LGZGD group. The LGZGD group rats were administrated with 8.4 g/kg/d LGZGD for seven consecutive days through gavage, while the blank control group rats were given an equal volume of saline. The serum was extracted from all the rats. To investigate the efficacy and the underlying mechanism of LGZGD, we categorized the H9c2 cells into groups: the control group, model group, normal serum control (NSC) group, LGZGD group, LGZGD + all-trans-retinoic acid (ATRA) group, and ATRA group. Malonedialdehyde (MDA) and superoxide dismutase (SOD) were used as markers for oxidative stress. Dichlorodihydrofluorescin diacetate (DCFH-DA) staining was used to measure the levels of reactive oxygen species (ROS). The apoptosis rate was detected using flow cytometry. The expression levels of pro-caspase-3, cleaved-caspase-3, Bcl-2, Bax, Keap1, Nrf2, and HO-1 were measured using western blotting. The mRNA levels of Keap1, Nrf2, and HO-1 were measured using RT-qPCR. Results. The LGZGD attenuated injury to H9c2 cells and reduced the apoptosis rate. It was also found to upregulate the SOD activity and suppress the formation of MDA and ROS. The expression levels of pro-caspase-3 and Bcl-2 were significantly increased, while those of cleaved-caspase-3 and Bax were decreased in the LGZGD group compared with the model group. As compared with the model group, the LGZGD group demonstrated decreased Keap1 protein expression and significantly increased Nrf2 nuclear expression and Nrf2-mediated transcriptional activity. ATRA was found to reverse the LGZGD-mediated antioxidative and antiapoptotic effect on injured H9c2 cells induced by H2O2. Conclusion. Our results demonstrated that LGZGD attenuated the H2O2-induced injury to H9c2 cells by inhibiting oxidative stress and apoptosis via the Nrf2/Keap1/HO-1 pathway. These observations suggest that LGZGD might prevent and treat heart failure through regulation of the oxidative stress response.


Medicina ◽  
2019 ◽  
Vol 55 (6) ◽  
pp. 308 ◽  
Author(s):  
Ahmed Eleojo Musa ◽  
Dheyauldeen Shabeeb ◽  
Haider Saadoon Qasim Alhilfi

Background and Objectives: Radiation enteritis is a common side effect after radiotherapy for abdominal and pelvic malignancies. The aim of the present study was to investigate the protective effect of melatonin, known for its free radical scavenging ability, against radiotherapy-induced small intestinal oxidative damage. Materials and Methods: Thirty male Wistar rats were randomly assigned to six groups (5 rats in each) as follows: Group I (control group) rats received neither radiation nor melatonin; group II rats received only 8 Gy single dose of gamma radiation to their abdomen and pelvis regions; group III (administered with only 50 mg/kg melatonin); group IV (administered with only 100 mg/kg melatonin); group V (50 mg/kg melatonin + 8 Gy radiation), group VI (100 mg/kg melatonin + 8 Gy radiation). All rats were sacrificed after 5 days for biochemical assessments of their intestinal tissues. Results: Treatment with melatonin post irradiation significantly reduced malondialdehyde (MDA) levels as well as increased both superoxide dismutase (SOD) and catalase (CAT) activities of the irradiated intestinal tissues. In addition, melatonin administration with different doses pre irradiation led to protection of the tissues. Moreover, the 100 mg/kg dose was more effective compared to 50 mg/kg. Conclusions: The results of our study suggest that melatonin has a potent protective effect against radiotherapy-induced intestinal damage, by decreasing oxidative stress and increasing antioxidant enzymes. We recommend future clinical trials for more insights.


Zygote ◽  
2019 ◽  
Vol 28 (1) ◽  
pp. 59-64
Author(s):  
Yuhan Zhao ◽  
Yongnan Xu ◽  
Yinghua Li ◽  
Qingguo Jin ◽  
Jingyu Sun ◽  
...  

SummaryKaempferol (KAE) is one of the most common dietary flavonols possessing biological activities such as anticancer, anti-inflammatory and antioxidant effects. Although previous studies have reported the biological activity of KAE on a variety of cells, it is not clear whether KAE plays a similar role in oocyte and embryo in vitro culture systems. This study investigated the effect of KAE addition to in vitro maturation on the antioxidant capacity of embryos in porcine oocytes after parthenogenetic activation. The effects of kaempferol on oocyte quality in porcine oocytes were studied based on the expression of related genes, reactive oxygen species, glutathione and mitochondrial membrane potential as criteria. The rate of blastocyst formation was significantly higher in oocytes treated with 0.1 µm KAE than in control oocytes. The mRNA level of the apoptosis-related gene Caspase-3 was significantly lower in the blastocysts derived from KAE-treated oocytes than in the control group and the mRNA expression of the embryo development-related genes COX2 and SOX2 was significantly increased in the KAE-treated group compared with that in the control group. Furthermore, the level of intracellular reactive oxygen species was significantly decreased and that of glutathione was significantly increased after KAE treatment. Mitochondrial membrane potential (ΔΨm) was increased and the activity of Caspase-3 was significantly decreased in the KAE-treated group compared with that in the control group. Taken together, these results suggested that KAE is beneficial for the improvement of embryo development by inhibiting oxidative stress in porcine oocytes.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Mateusz Maciejczyk ◽  
Piotr Gerreth ◽  
Anna Zalewska ◽  
Katarzyna Hojan ◽  
Karolina Gerreth

Stroke is one of the leading causes of disability and death worldwide. Despite intensive medical care, many of the complaints directly threatening the patient’s life marginalize their dental needs after the stroke. Recent studies indicate reduced saliva secretion in stroke patients in addition to the increased incidence of caries and periodontal disease. Since oxidative stress plays a vital role in the pathogenesis of salivary gland hypofunction and neurodegenerative disorders (including stroke), this is the first to evaluate the relationship between salivary gland activity and protein glycoxidation and nitrosative damage. The content of glycation and protein oxidation products and nitrosative stress was assessed in nonstimulated (NWS) and stimulated (SWS) whole saliva of stroke patients with normal salivary secretion and hyposalivation (reduced saliva production). The study included 30 patients in the stroke’s subacute phase and 30 healthy controls matched by age and sex. We have shown that stroke patients with hyposalivation show increased contents of protein glycation (↑Amadori products and ↑advanced glycation end products), glycoxidation (↑dityrosine), and nitration (↑nitrotyrosine) products compared to stroke cases with normal salivary secretion and control group. Interestingly, higher oxidative/nitrosative stress was found in NWS, which strongly correlates with salivary flow rate, total protein content, and salivary amylase activity. Such relationships were not observed in the control group. Summarizing, oxidative and nitrosative stress may be one of the mechanisms responsible for the impairment of saliva secretion in stroke patients. However, extraglandular sources of salivary oxidative stress in stroke patients cannot be excluded. Further studies to assess salivary gland hypofunction in stroke cases are necessary.


Sign in / Sign up

Export Citation Format

Share Document