scholarly journals High Frequency Modal Testing of the Multiblade Packets Using a Noncontact Measurement and Excitation System

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
C. H. Liu ◽  
C. Zang ◽  
F. Li ◽  
E. P. Petrov

High cycle failure of blades and vanes caused by the vibration is one of the major causes reducing the lifetime of turbomachines. For multiblade packets, the failure may occur at vibrations with high frequencies that can reach up to tens of kHz. The experimental modal testing of blades is crucial for the validation of numerical models and for the optimization of turbomachine design. In this paper, the test rig and procedure for measurements of dynamic characteristics of lightweight multiblade packets in wide and high frequency ranges are developed. The measurements are based on a noncontact excitation and noncontact measurement method, which allows the determination of the modal characteristics of the packets with high accuracy in wide frequency ranges. The responses of the multiblade packets are measured using a Scanning Laser Doppler Vibrometry (SLDV), while vibrations are excited by the acoustic excitation technique. Modal tests of the blade packet comprising 18 vane blades connected by shrouds are performed. The measurements are performed within the high frequency range of 0–30 kHz, and the natural frequencies and mode shapes are obtained for first 97 modes. To capture the complex high frequency blade mode shapes, each blade in the packet is scanned over 25 reference points uniformly distributed over the blade concave surface. In order to obtain the high frequency resolution, the frequency range used for the measurements is split into several frequency intervals accordingly to the number of spectral lines available in the used data acquisition system, and for each such interval, the test is performed separately. The finite model of the packet is created, and the numerical modal analysis is performed to compare the calculated natural frequencies and mode shapes with the experimental measurements. The comparison shows the satisfactory with those from finite element analysis. It illustrates the measurement method described in this work is effective and reliable.


1998 ◽  
Vol 65 (1) ◽  
pp. 258-265 ◽  
Author(s):  
R. R. Reynolds ◽  
E. H. Dowell

The transient response of a structure is predicted using an asymptotic modal approximation of the classical modal solution. The method is aimed at estimating the impulse response problem for high frequency regimes where typical numerical methods (e.g., finite elements) are impractical. As an example, the response of a thin elastic panel is modeled in a frequency range that includes a sufficient number of modes. Both impulsive and arbitrary forms of excitation are considered. It is shown that the asymptotic modal analysis yields an excellent estimate of both the local displacement near the excitation location and of the spatially averaged transient response of the panel for moderate time spans after the excitation is applied. Furthermore, as this approach does not require that the mode shapes or natural frequencies of the structure to be calculated, it is an extremely efficient technique.



Author(s):  
Xiaoping Zhou ◽  
Abhijit Gupta

Natural frequencies and mode shapes of a structure will change whenever the structure has any kind of damage. This paper introduces a technique to quantify and locate the damage when the natural frequencies and mode shapes of undamaged and damaged structure are known. Aluminum beams (with and without damage) are used for numerical simulation and experimental verification. To establish the theoretical basis of this method, finite element formulation is used. A set of undetermined equations involving damage indices and natural frequencies and mode shapes of undamaged and damaged structures are obtained. The damage indices are computed using non-negative least squares method. Impact modal testing was conducted with three aluminum beams and damage indices based on experimental data are compared with actual damage cases to establish the effectiveness of this method to identify the damage.



2019 ◽  
Vol 61 (1) ◽  
pp. 271-278
Author(s):  
Tomohiro Yoshikawa ◽  
Jianqing Wang ◽  
Yasunori Oguri ◽  
Makoto Tanaka ◽  
Michihira Iida


2000 ◽  
Vol 7 (2) ◽  
pp. 91-100 ◽  
Author(s):  
A.B. Stanbridge ◽  
D.J. Ewins ◽  
A.Z. Khan

If a laser Doppler vibrometer is used in a continuously-scanning mode to measure the response of a vibrating structure, its output spectrum contains side-bands from which the response mode shape, as defined along the scan line, may be obtained. With impact excitation, the response is the summation of a set of exponentially-decaying sinusoids which, in the frequency domain, has peaks at the natural frequencies and at `sideband' pseudo-natural frequencies, spaced at multiples of the scan frequency. Techniques are described for deriving natural mode shapes from these, using standard modal analysis procedures. Some limitations as to the types of mode which can be analysed are described. The process is simple and speedy, even when compared with a normal point-by-point impact test survey. Information may also be derived, using a circular scan, on the direction of vibration, and angular vibration, at individual points.



Author(s):  
Diego A. Chamberlain ◽  
Chris K. Mechefske

Experimental modal testing using an impact hammer is a commonly used method for obtaining the modal parameters of any structure for which the vibrational behavior is of interest. Natural frequencies and associated mode shapes of the structure can be extracted directly from measured FRFs (Frequency Response Functions) through various curve fitting procedures. This paper provides an overview of the modal testing conducted on an aerospace component. Testing set-up, experimental equipment and the methodology employed are all described in detail. Further validation of the testing procedure was done by ensuring that the experimental results satisfy the requirements of repeatability, reciprocity and linearity. The relevant ISO standard has been referenced and important concepts to modal analysis are expanded upon. Recorded natural frequencies, coherence and a description of the observed mode shapes are presented along with notable trends.



Author(s):  
P. Schmiechen ◽  
D. J. Ewins ◽  
I. Bucher

Abstract For an investigation into the structural interaction between rotating and non-rotating rotationally periodic turbine components, it was required to be able to generate experimentally prescribed response conditions. In more descriptive terms, conditions were sought to excite wave-patterns such as travelling and standing waves, and to suppress certain modes. In the paper these conditions are derived from modal properties. Simulated data are presented to demonstrate some of the phenomena and to highlight the practical difficulties. For rotationally periodic structures, most natural frequencies are of multiplicity two, and are sometimes called ‘double modes’. Their associated mode shapes can rotate in the plane of symmetry. The responses due to the two modes can be combined and expressed in a wave form, which can be split into travelling and standing wave components. Theoretically, it is possible to excite a pure travelling wave in a perfectly rotationally periodic structure, but there are limits to this in practice as real structures will always exhibit some degree of imperfection. These structures are said to be mistuned, and the imperfection splits the double modes into pairs of close modes. Simulations show the predicted vibration phenomena. In particular, the case of discrete excitations relevant to modal testing is investigated. The simulations show clearly that in this case components of other modes will generally be present. In an experiment, the results for driving the excitations will not give the theoretically expected response due to non-linearities of the shaker-structure interaction. However, the effects can be reduced by employing a computerised search algorithm.



2012 ◽  
Vol 04 (03) ◽  
pp. 1250028 ◽  
Author(s):  
QIAN GENG ◽  
YUEMING LI

A study on vibration and acoustic radiation characters of an isotropic rectangular thin plate under thermal environments is presented in this paper. It is assumed that thermal loads caused by thermal environments just change the structure stress state. Thermal stresses induced by uniform temperature rise of the plate are determined with the thermo-elastic theory. Then the stress state is used in the following dynamic analysis as a pre-stressed factor. It is observed that thermal loads influence the natural frequencies evidently, especially the fundamental natural frequency. The order of mode shapes stays the same. Dynamic response peaks float to lower frequency range with the increment of structure temperature. Acoustic radiation efficiency of the plate subjected to thermal loads decreases in the mid-frequency band. For validation, numerical simulations are also carried out. It can be found that the combined approach of finite element method (FEM) and boundary element method (BEM) is more appropriate for radiation problems.



1996 ◽  
Vol 15 (2) ◽  
pp. 71-79 ◽  
Author(s):  
Anna SöRensson ◽  
Lage Burström

The aim of this study has been to develop a measurement method to study the absorption of vibration energy on exposure to high frequency vibrations. The developed measurement method consists of specially constructed equipment for measurement and analysis of the subject's absorption of vibration energy. In this study the energy absorption from the exposure to white noise vibration within the frequency-range 20 to 5000 Hz has been studied. Five female and five male subjects were involved in this study. The results show that the developed method of measurement works satisfactorily and gives reliable results for the energy absorption within the frequency-range 20 to 4000 Hz. Furthermore, the results show that the subjects absorb vibration energy even for frequencies above 1000 Hz. The results also show that the energy absorption is dependent upon factors such as gender, the level of the vibration and the frequency.



2006 ◽  
Vol 43 (01) ◽  
pp. 11-21
Author(s):  
Junbo Jia ◽  
Anders Ulfvarson

Due to their characteristics and lower maintenance cost, lightweight aluminum structures have been widely used for manufacturing deck structures. When this type of structure is developed, the natural frequencies for the unloaded deck may increase, while the natural frequencies for loaded decks are most likely to decrease and new problems of vibration and damping may appear. In addition, it has already been shown by the authors that compared to the load effects of normal cargo, the dynamic structural behavior of a vehicle-loaded deck is different due to the participation of vehicle vibrations. The current paper presents a modal analysis by both testing and finite element (FE) calculation for a lightweight deck using aluminum panels. By comparing the results between the unloaded and car-loaded cases, it is shown how vehicle loading influences the dynamic structural behavior of the deck structures. The authors report that an aluminum panel mechanically connected to a steel frame may participate in some mode shapes of vibrations that significantly increase the corresponding damping ratio. The reasonably good agreement between modal testing results and FE calculations validates the finite element model, which may then be used for further dynamic analysis. The authors found that the spring-damping systems of car suspension and tires can interfere in the dynamic transmission of the vehicle mass into the deck structure. The study enables structural engineers interested in the design of car carriers to have a better understanding of how the vehicles parked on decks can influence the dynamic characteristics of the vehicle deck systems.



1985 ◽  
Vol 107 (2) ◽  
pp. 271-276 ◽  
Author(s):  
C. E. Spiekermann ◽  
C. J. Radcliffe ◽  
E. D. Goodman

Vibration isolation of a rigid body on compliant mounts has many engineering applications. An analysis for solving these problems using a rigid body simulation and a penalty function optimization is discussed. The simulation is used to calculate natural frequencies and mode shapes, which are a function of the mount design parameters. Laboratory testing results are presented which verify the accuracy of the simulation. The optimization procedure penalizes natural frequencies in an undesirable frequency range and also large design changes. This penalty function is minimized by changing the mount design paramters consisting of the location, stiffness, and/or orientation. The result is a set of design parameters defining a vibration isolation system with natural frequencies moved away from the center of the undesirable frequency range. An interactive computer program was written which allows the engineer to use this technique as a design tool.



Sign in / Sign up

Export Citation Format

Share Document