scholarly journals Classification of Resting-State Status Based on Sample Entropy and Power Spectrum of Electroencephalography (EEG)

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Ahmed M. A. Mohamed ◽  
Osman N. Uçan ◽  
Oğuz Bayat ◽  
Adil Deniz Duru

An electroencephalogram (EEG) is a significant source of diagnosing brain issues. It is also a mediator between the external world and the brain, especially in the case of any mental illness; however, it has been widely used to monitor the dynamics of the brain in healthy subjects. This paper discusses the resting state of the brain with eyes open (EO) and eyes closed (EC) by using sixteen channels by the use of conventional frequency bands and entropy of the EEG signal. The Fast Fourier Transform (FFT) and sample entropy (SE) of each sensor are computed as methods of feature extraction. Six classifiers, including logistic regression (LR), K-Nearest Neighbors (KNN), linear discriminant (LD), decision tree (DT), support vector machine (SVM), and Gaussian Naive Bayes (GNB) are used to discriminate the resting states of the brain based on the extracted features. EEG data were epoched with one-second-length windows, and they were used to compute the features to classify EO and EC conditions. Results showed that the LR and SVM classifiers had the highest average classification accuracy (97%). Accuracies of LD, KNN, and DT were 95%, 93%, and 92%, respectively. GNB gained the least accuracy (86%) when conventional frequency bands were used. On the other hand, when SE was used, the average accuracies of SVM, LD, LR, GNB, KNN, and DT algorithms were 92% 90%, 89%, 89%, 86%, and 86%, respectively.

2014 ◽  
Vol 111 (7) ◽  
pp. 1455-1465 ◽  
Author(s):  
Seung-Hyun Jin ◽  
Woorim Jeong ◽  
Dong-Soo Lee ◽  
Beom Seok Jeon ◽  
Chun Kee Chung

A question to be addressed in the present study is how different the eyes-closed (EC) and eyes-open (EO) resting states are across frequency bands in terms of efficiency and centrality of the brain functional network. We investigated both the global and nodal efficiency and betweenness centrality in the EC and EO resting states from 39 volunteers. Mutual information was used to obtain the functional connectivity for each of the four frequency bands (theta, alpha, beta, and gamma). We showed that the cortical hubs with high betweenness centrality were maintained in the EC and EO resting states. We further showed that these hubs were associated with more than three frequency bands, suggesting that these hubs play an important role in the brain functional network at multiple temporal scales in the resting states. Enhanced global efficiency values were found in the theta and alpha bands in the EO state compared with those in the EC state. Moreover, it turned out that in the EO state the functional network was reorganized to enhance nodal efficiency at the nodes related to both the default mode and the dorsal attention networks and sensory-related resting-state networks. This result suggests that in the EO state the brain functional network was efficiently reorganized, facilitating the adaptation of the brain network to the change in state, which could help in understanding brain disorders that have a disturbance in communication with external environments by using the adaptation ability of brain functional networks.


2020 ◽  
Vol 10 (5) ◽  
pp. 272
Author(s):  
Alessio Bellato ◽  
Iti Arora ◽  
Puja Kochhar ◽  
Chris Hollis ◽  
Madeleine J. Groom

Investigating electrophysiological measures during resting-state might be useful to investigate brain functioning and responsivity in individuals under diagnostic assessment for attention deficit hyperactivity disorder (ADHD) and autism. EEG was recorded in 43 children with or without ADHD and autism, during a 4-min-long resting-state session which included an eyes-closed and an eyes-open condition. We calculated and analyzed occipital absolute and relative spectral power in the alpha frequency band (8–12 Hz), and alpha reactivity, conceptualized as the difference in alpha power between eyes-closed and eyes-open conditions. Alpha power was increased during eyes-closed compared to eyes-open resting-state. While absolute alpha power was reduced in children with autism, relative alpha power was reduced in children with ADHD, especially during the eyes-closed condition. Reduced relative alpha reactivity was mainly associated with lower IQ and not with ADHD or autism. Atypical brain functioning during resting-state seems differently associated with ADHD and autism, however further studies replicating these results are needed; we therefore suggest involving research groups worldwide by creating a shared and publicly available repository of resting-state EEG data collected in people with different psychological, psychiatric, or neurodevelopmental conditions, including ADHD and autism.


2021 ◽  
Author(s):  
Sajjad Farashi ◽  
Mojtaba Khazaei

Levodopa-based drugs are widely used for mitigating the complications induced by PD. Despite the positive effects, several issues regarding the way that levodopa changes brain activities have remained unclear. Methods-A combined strategy using EEG data and graph theory was used for investigating how levodopa changed connectome and processing hubs of the brain during resting-state. Obtained results were subjected to ANOVA test and multiple-comparison post-hoc correction procedure. Results: Results showed that graph topology of PD patients was not significantly different with the healthy group during eyes-closed condition while in eyes-open condition statistical significant differences were found. The main effect of levodopa medication was observed for gamma-band activity of the brain in which levodopa changed the brain connectome toward a star-like topology. Considering the beta subband of EEG data, graph leaf number increased following levodopa medication in PD patients. Enhanced brain connectivity in gamma band and reduced beta band connections in basal ganglia were also observed after levodopa medication. Furthermore, source localization using dipole fitting showed that levodopa prescription suppressed the activity of collateral trigone. Conclusion: Our combined EEG and graph analysis showed that levodopa medication changed the brain connectome, especially in the high-frequency range of EEG (beta and gamma).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria J. S. Guerreiro ◽  
Madita Linke ◽  
Sunitha Lingareddy ◽  
Ramesh Kekunnaya ◽  
Brigitte Röder

AbstractLower resting-state functional connectivity (RSFC) between ‘visual’ and non-‘visual’ neural circuits has been reported as a hallmark of congenital blindness. In sighted individuals, RSFC between visual and non-visual brain regions has been shown to increase during rest with eyes closed relative to rest with eyes open. To determine the role of visual experience on the modulation of RSFC by resting state condition—as well as to evaluate the effect of resting state condition on group differences in RSFC—, we compared RSFC between visual and somatosensory/auditory regions in congenitally blind individuals (n = 9) and sighted participants (n = 9) during eyes open and eyes closed conditions. In the sighted group, we replicated the increase of RSFC between visual and non-visual areas during rest with eyes closed relative to rest with eyes open. This was not the case in the congenitally blind group, resulting in a lower RSFC between ‘visual’ and non-‘visual’ circuits relative to sighted controls only in the eyes closed condition. These results indicate that visual experience is necessary for the modulation of RSFC by resting state condition and highlight the importance of considering whether sighted controls should be tested with eyes open or closed in studies of functional brain reorganization as a consequence of blindness.


2021 ◽  
Vol 11 (2) ◽  
pp. 214
Author(s):  
Anna Kaiser ◽  
Pascal-M. Aggensteiner ◽  
Martin Holtmann ◽  
Andreas Fallgatter ◽  
Marcel Romanos ◽  
...  

Electroencephalography (EEG) represents a widely established method for assessing altered and typically developing brain function. However, systematic studies on EEG data quality, its correlates, and consequences are scarce. To address this research gap, the current study focused on the percentage of artifact-free segments after standard EEG pre-processing as a data quality index. We analyzed participant-related and methodological influences, and validity by replicating landmark EEG effects. Further, effects of data quality on spectral power analyses beyond participant-related characteristics were explored. EEG data from a multicenter ADHD-cohort (age range 6 to 45 years), and a non-ADHD school-age control group were analyzed (ntotal = 305). Resting-state data during eyes open, and eyes closed conditions, and task-related data during a cued Continuous Performance Task (CPT) were collected. After pre-processing, general linear models, and stepwise regression models were fitted to the data. We found that EEG data quality was strongly related to demographic characteristics, but not to methodological factors. We were able to replicate maturational, task, and ADHD effects reported in the EEG literature, establishing a link with EEG-landmark effects. Furthermore, we showed that poor data quality significantly increases spectral power beyond effects of maturation and symptom severity. Taken together, the current results indicate that with a careful design and systematic quality control, informative large-scale multicenter trials characterizing neurophysiological mechanisms in neurodevelopmental disorders across the lifespan are feasible. Nevertheless, results are restricted to the limitations reported. Future work will clarify predictive value.


Author(s):  
Negin Manshouri ◽  
Mesut Melek ◽  
Temel Kayikcioglu

Despite the long and extensive history of 3D technology, it has recently attracted the attention of researchers. This technology has become the center of interest of young people because of the real feelings and sensations it creates. People see their environment as 3D because of their eye structure. In this study, it is hypothesized that people lose their perception of depth during sleepy moments and that there is a sudden transition from 3D vision to 2D vision. Regarding these transitions, the EEG signal analysis method was used for deep and comprehensive analysis of 2D and 3D brain signals. In this study, a single-stream anaglyph video of random 2D and 3D segments was prepared. After watching this single video, the obtained EEG recordings were considered for two different analyses: the part involving the critical transition (transition-state) and the state analysis of only the 2D versus 3D or 3D versus 2D parts (steady-state). The main objective of this study is to see the behavioral changes of brain signals in 2D and 3D transitions. To clarify the impacts of the human brain’s power spectral density (PSD) in 2D-to-3D (2D_3D) and 3D-to-2D (3D_2D) transitions of anaglyph video, 9 visual healthy individuals were prepared for testing in this pioneering study. Spectrogram graphs based on Short Time Fourier transform (STFT) were considered to evaluate the power spectrum analysis in each EEG channel of transition or steady-state. Thus, in 2D and 3D transition scenarios, important channels representing EEG frequency bands and brain lobes will be identified. To classify the 2D and 3D transitions, the dominant bands and time intervals representing the maximum difference of PSD were selected. Afterward, effective features were selected by applying statistical methods such as standard deviation (SD), maximum (max), and Hjorth parameters to epochs indicating transition intervals. Ultimately, k-Nearest Neighbors (k-NN), Support Vector Machine (SVM), and Linear Discriminant Analysis (LDA) algorithms were applied to classify 2D_3D and 3D_2D transitions. The frontal, temporal, and partially parietal lobes show 2D_3D and 3D_2D transitions with a good classification success rate. Overall, it was found that Hjorth parameters and LDA algorithms have 71.11% and 77.78% classification success rates for transition and steady-state, respectively.


Author(s):  
Muhammad Afif Hendrawan ◽  
Pramana Yoga Saputra ◽  
Cahya Rahmad

Nowadays, biometric modalities have gained popularity in security systems. Nevertheless, the conventional commercial-grade biometric system addresses some issues. The biggest problem is that they can be imposed by artificial biometrics. The electroencephalogram (EEG) is a possible solution. It is nearly impossible to replicate because it is dependent on human mental activity. Several studies have already demonstrated a high level of accuracy. However, it requires a large number of sensors and time to collect the signal. This study proposed a biometric system using single-channel EEG recorded during resting eyes open (EO) conditions. A total of 45 EEG signals from 9 subjects were collected. The EEG signal was segmented into 5 second lengths. The alpha band was used in this study. Discrete wavelet transform (DWT) with Daubechies type 4 (db4) was employed to extract the alpha band. Power spectral density (PSD) was extracted from each segment as the main feature. Linear discriminant analysis (LDA) and support vector machine (SVM) were used to classify the EEG signal. The proposed method achieved 86% accuracy using LDA only from the third segment. Therefore, this study showed that it is possible to utilize single-channel EEG during a resting EO state in a biometric system.


2021 ◽  
Vol 11 (23) ◽  
pp. 11252
Author(s):  
Ayana Mussabayeva ◽  
Prashant Kumar Jamwal ◽  
Muhammad Tahir Akhtar

Classification of brain signal features is a crucial process for any brain–computer interface (BCI) device, including speller systems. The positive P300 component of visual event-related potentials (ERPs) used in BCI spellers has individual variations of amplitude and latency that further changse with brain abnormalities such as amyotrophic lateral sclerosis (ALS). This leads to the necessity for the users to train the speller themselves, which is a very time-consuming procedure. To achieve subject-independence in a P300 speller, ensemble classifiers are proposed based on classical machine learning models, such as the support vector machine (SVM), linear discriminant analysis (LDA), k-nearest neighbors (kNN), and the convolutional neural network (CNN). The proposed voters were trained on healthy subjects’ data using a generic training approach. Different combinations of electroencephalography (EEG) channels were used for the experiments presented, resulting in single-channel, four-channel, and eight-channel classification. ALS patients’ data represented robust results, achieving more than 90% accuracy when using an ensemble of LDA, kNN, and SVM on four active EEG channels data in the occipital area of the brain. The results provided by the proposed ensemble voting models were on average about 5% more accurate than the results provided by the standalone classifiers. The proposed ensemble models could also outperform boosting algorithms in terms of computational complexity or accuracy. The proposed methodology shows the ability to be subject-independent, which means that the system trained on healthy subjects can be efficiently used for ALS patients. Applying this methodology for online speller systems removes the necessity to retrain the P300 speller.


2018 ◽  
Vol 8 (7) ◽  
pp. 134 ◽  
Author(s):  
Daniel Blackburn ◽  
Yifan Zhao ◽  
Matteo De Marco ◽  
Simon Bell ◽  
Fei He ◽  
...  

Background: The incidence of Alzheimer disease (AD) is increasing with the ageing population. The development of low cost non-invasive diagnostic aids for AD is a research priority. This pilot study investigated whether an approach based on a novel dynamic quantitative parametric EEG method could detect abnormalities in people with AD. Methods: 20 patients with probable AD, 20 matched healthy controls (HC) and 4 patients with probable fronto temporal dementia (FTD) were included. All had detailed neuropsychology along with structural, resting state fMRI and EEG. EEG data were analyzed using the Error Reduction Ratio-causality (ERR-causality) test that can capture both linear and nonlinear interactions between different EEG recording areas. The 95% confidence intervals of EEG levels of bi-centroparietal synchronization were estimated for eyes open (EO) and eyes closed (EC) states. Results: In the EC state, AD patients and HC had very similar levels of bi-centro parietal synchronization; but in the EO resting state, patients with AD had significantly higher levels of synchronization (AD = 0.44; interquartile range (IQR) 0.41 vs. HC = 0.15; IQR 0.17, p < 0.0001). The EO/EC synchronization ratio, a measure of the dynamic changes between the two states, also showed significant differences between these two groups (AD ratio 0.78 versus HC ratio 0.37 p < 0.0001). EO synchronization was also significantly different between AD and FTD (FTD = 0.075; IQR 0.03, p < 0.0001). However, the EO/EC ratio was not informative in the FTD group due to very low levels of synchronization in both states (EO and EC). Conclusion: In this pilot work, resting state quantitative EEG shows significant differences between healthy controls and patients with AD. This approach has the potential to develop into a useful non-invasive and economical diagnostic aid in AD.


Sign in / Sign up

Export Citation Format

Share Document