scholarly journals Research of Transitional Failure Mode as Damage Evolution in Rock Wall

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xiao-guang Li ◽  
Changhong Li ◽  
Yuan Li ◽  
Pu-jin Zhang

The stress condition of tunnel surrounding rock mass is complex. The stress concentration of in situ brittle rock mass caused by excavation results in localized damage evolution parallel to the free face, which is called surface instability. The rock wall shows the transition characteristics of the failure mode with the distance from the surface to the depth. Low strength surface instability and transition failure modes of the tunnel’s rock wall are common in deep condition but cylindrical specimens cannot simulate stress state of rock wall surface well in conventional rock mechanics tests. This paper conducted the indoor experimental study of the biaxial stress state and studied the surface instability of samples. An indoor test device for the simulation of transitional surface failure of the rock wall was developed. Through a biaxial stress loading test on the rectangular rock sample, the damage process and crack development of rock samples were analyzed, and the law of stress and strain related to the failure mode transition was characterized as well. Based on test results and strength analysis, an explanation of the failure theory and its corresponding model are proposed based on the maximum strain strength theory. Furthermore, this paper concludes that the failure mode of surface instability presents transition feature from brittle to ductile with the increase of distance from the surface to depth.

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0246815
Author(s):  
Honggang Zhao ◽  
Haitao Sun ◽  
Dongming Zhang ◽  
Chao Liu

Two kinds of common tunnel shapes, i.e. elliptical opening and square opening were selected for biaxial compression tests, and the influences of two kinds of opening shapes on the mechanical properties, failure characteristics and failure modes of sandstone were compared and analyzed. The complex variable theory and mapping functions were used to obtain the analytical stress solution around elliptical and square openings. The results show that the stability of the specimen containing an elliptical opening was better than that of the specimen containing a square opening under the same lateral stress. Compared with the elliptical opening, the local damage was formed earlier in the square opening which might be caused by a higher stress concentration around the square opening. The stress distributions around openings were influenced by the opening shape and lateral stress coefficient. The top and bottom of square opening were more prone to tensile fracture, and the distribution range of tensile was larger than that of elliptical opening. When the opening failed, the intensity of square opening failure was weaker than that of elliptical opening. On the basis of the average frequency value and the rise angle value, the failure mode of specimen containing elliptical or square opening was distinguished. It was found that the mixed tension and shear failure dominated the failure of specimens with different opening shapes, and the number of shear cracks in the specimen containing a square opening was greater than that in the specimen containing an elliptical opening. The above method of judging failure mode by acoustic emission signals was well verified by the CT images of damaged specimens.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zhonghu Wu ◽  
Huailei Song ◽  
Liping Li ◽  
Zongqing Zhou ◽  
Yujun Zuo ◽  
...  

Filling of brittle minerals such as quartz is one of the main factors affecting the initiation and propagation of reservoir fractures in shale fracturing, in order to explore the failure mode and thermal damage characteristics of quartz-filled shale under thermal-mechanical coupling. Combining the theory of damage mechanics and thermoelasticity, RFPA2D-Thermal is used to establish a numerical model that can reflect the damage evolution of shale under thermal-solid coupling, and the compression test under thermal-mechanical coupling is performed. The test results show that during the temperature loading process, there is a temperature critical value between 60°C and 75°C. When the temperature is less than the critical temperature, the test piece unit does not appear obvious damage. When the temperature is greater than the critical temperature, the specimen unit will experience obvious thermal damage, and the higher the temperature, the more serious the cracking. Under the thermal-mechanical coupling of shale, the tensile strength and elastic modulus of shale show a decreasing trend with the increase of temperature. The failure modes of shale under thermal-solid coupling can be roughly divided into three categories: “V”-shaped failure (30°C, 45°C, and 75°C), “M”-shaped failure (60°C), and inverted “λ”-shaped failure (90°C). The larger the fractal dimension, the more complex the failure mode of the specimen. The maximum fractal dimension is 1.262 when the temperature is 60°C, and the corresponding failure mode is the most complex “M” shape. The fractal dimension is between 1.071 and 1.189, and the corresponding failure mode is “V” shape. The fractal dimension is 1.231, and the corresponding failure mode is inverted “λ” shape.


2013 ◽  
Vol 868 ◽  
pp. 282-286 ◽  
Author(s):  
Li Min Zhang ◽  
Shu Ran Lv ◽  
Hong Yan Liu

Failure modes of jointed rock mass with different joint dip angle, joint center continuity degree, joint sets, load strain ratio and joint filling width under SHPB test are studied with model tests. The results show that failure modes and dynamic strength of jointed rock mass are much related to joint geometry. To rock mass with a single joint, its strength and failure mode are greatly controlled by the joint dip angle. The dynamic strength of the samples with joint dip angle 0° and 90°, whose failure modes are both tensile failure, is 90% and 71% of that of intact one, respectively. The dynamic strength of the samples with joint dip angle 60° is nearly zero. The dynamic strength of the samples with joint dip angle 30° and 45°, whose failure modes are mainly shear failure with partly tensile failure, is 50% and 18% of that of intact ones, respectively. The dynamic strength of the samples with 1/4, 1/2 and 4/5 joint center continuity degree is 95%, 74% and 28% of that of intact one, respectively. The dynamic strength of the samples with 1, 2 and 3 sets of joints is 54%, 23% and 10% of that of intact one, respectively. The dynamic strength of the intact and jointed samples both increases with load strain ratio, and the sensitivity to load strain ratio of the former is much higher than that of the latter, whose failure mode becomes more complicated accordingly. With increase of joint fillings width, the samples dynamic strength decreases gradually, but its failure mode does not change.


2006 ◽  
Vol 324-325 ◽  
pp. 771-774 ◽  
Author(s):  
Wen Jie Peng ◽  
Jian Qiao Chen

Traditional laminate strength analysis only considers face failure under in-plane loads. In fact, owing to the mismatch of the mechanical properties of the adjacent layers, a three-dimensional interlaminar singular stress fields develop in a small boundary region in the vicinity of the free edges of the laminate under mechanical load, which may lead to interlaminar delamination failure. Neglecting this interlaminar failure mode, the failure strength of laminate will be overestimated. In this paper, face failure and interlaminar failure are both considered. So for a lamina, three major failure modes are considered: matrix failure, fiber breakage and delamination. Finite element method is used to obtain the stresses in a laminate under mechanical loads. Stress-based criterions are adopted to predict the failure mode of laminas. When a lamina is failed, the lamina stiffness is reduced according to the corresponding failure mode, and the stresses of the laminate are re-analyzed. This procedure is repeatedly performed until the whole laminate fails and thus the ultimate strength is determined. The predicted ultimate strengths are in good agreement with experiment results in the open literature.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Hao Liu ◽  
Lulin Zheng ◽  
Yujun Zuo ◽  
Zhonghu Wu ◽  
Wenjibin Sun ◽  
...  

The different directions of joints in rock will lead to great differences in damage evolution characteristics. This study utilizes DIP (digital image processing) technology for characterizing the mesostructure of sandstone and combines DIP technology with RFPA2D. The mesoscale fracture mechanics behavior of 7 groups of jointed sandstones with various dip angles was numerically studied, and its reliability was verified through theoretical analysis. According to digital image storage principle and box dimension theory, the box dimension algorithm of rock mesoscale fracture is written in MATLAB, the calculation method of fractal dimension of mesoscale fracture was proposed, and the corresponding relationship between mesoscale fractal dimension and fracture damage degree was established. Studies have shown that compressive strength as well as elastic modulus of sandstone leads to a U-shaped change when joint dip increases. There are a total of six final failure modes of joint samples with different inclination angles. Failure mode and damage degree can be quantified by D (fractal dimension) and ω (mesoscale fracture damage degree), respectively. The larger the ω, the more serious the damage, and the greater the D, the more complex the failure mode. Accumulative AE energy increases exponentially with the increase of loading step, and the growth process can be divided into gentle period, acceleration period, and surge period. The mesoscale fracture damage calculation based on the fractal dimension can be utilized for quantitatively evaluating the spatial distribution characteristics of mesoscale fracture, which provides a new way to study the law of rock damage evolution.


1994 ◽  
Vol 356 ◽  
Author(s):  
S. Pramanick ◽  
D. D. Brown ◽  
V. Pham ◽  
P. Besser ◽  
J. Sanchez ◽  
...  

AbstractThe electromigration failure mode and failure rate during accelerated electromigration testing is expected to be strongly affected by the mechanical stress state of Al lines, since tensile stress and compressive stress states favor void growth and hillock formations (extrusions), respectively. During electromigration testing, the mechanical stress state or evolution of mechanical stress of an interconnect is a function of current density and temperature, the two principal variables in electromigration testing. In our experiments, we have observed two different electromigration failure modes by varying the current density and temperatures where (i) the passivated Al lines tested at high current density and high temperatures failed by extrusion or hillock type failure and (ii) the interconnect lines tested at low current density and moderate temperature failed by voiding. A mechanical stress model which incorporates both the thermally generated stress and electromigration induced mechanical stress is invoked to explain the electromigration failure mode selection observed in our experiments.


Author(s):  
Cha-Ming Shen ◽  
Tsan-Cheng Chuang ◽  
Jie-Fei Chang ◽  
Jin-Hong Chou

Abstract This paper presents a novel deductive methodology, which is accomplished by applying difference analysis to nano-probing technique. In order to prove the novel methodology, the specimens with 90nm process and soft failures were chosen for the experiment. The objective is to overcome the difficulty in detecting non-visual, erratic, and complex failure modes. And the original idea of this deductive method is based on the complete measurement of electrical characteristic by nano-probing and difference analysis. The capability to distinguish erratic and invisible defect was proven, even when the compound and complicated failure mode resulted in a puzzling characteristic.


Author(s):  
Martin Versen ◽  
Dorina Diaconescu ◽  
Jerome Touzel

Abstract The characterization of failure modes of DRAM is often straight forward if array related hard failures with specific addresses for localization are concerned. The paper presents a case study of a bitline oriented failure mode connected to a redundancy evaluation in the DRAM periphery. The failure mode analysis and fault modeling focus both on the root-cause and on the test aspects of the problem.


Author(s):  
Bhanu P. Sood ◽  
Michael Pecht ◽  
John Miker ◽  
Tom Wanek

Abstract Schottky diodes are semiconductor switching devices with low forward voltage drops and very fast switching speeds. This paper provides an overview of the common failure modes in Schottky diodes and corresponding failure mechanisms associated with each failure mode. Results of material level evaluation on diodes and packages as well as manufacturing and assembly processes are analyzed to identify a set of possible failure sites with associated failure modes, mechanisms, and causes. A case study is then presented to illustrate the application of a systematic FMMEA methodology to the analysis of a specific failure in a Schottky diode package.


Sign in / Sign up

Export Citation Format

Share Document