scholarly journals D-Mannose Inhibits Adipogenic Differentiation of Adipose Tissue-Derived Stem Cells via the miR669b/MAPK Pathway

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yitong Liu ◽  
Lijia Guo ◽  
Lei Hu ◽  
Chen Xie ◽  
Jingfei Fu ◽  
...  

The adipogenic differentiation of adipose tissue-derived stem cells (ADSCs) plays an important role in the process of obesity and host metabolism. D-Mannose shows a potential regulating function for fat tissue expansion and glucose metabolism. To explore the mechanisms through which D-mannose affects the adipogenic differentiation of adipose-derived stem cells in vitro, we cultured the ADSCs with adipogenic medium inducement containing D-mannose or glucose as the control. The adipogenic differentiation specific markers Pparg and Fabp4 were determined by real-time PCR. The Oil Red O staining was applied to measure the lipid accumulation. To further explore the mechanisms, microarray analysis was performed to detect the differences between glucose-treated ADSCs (G-ADSCs) and D-mannose-treated ADSCs (M-ADSCs) in the gene expression level. The microarray data were further analyzed by a Venn diagram and Gene Set Enrichment Analysis (GSEA). MicroRNA inhibitor transfection was used to confirm the role of key microRNA. Results. D-Mannose intervention significantly inhibited the adipogenic differentiation of ADSCs, compared with the glucose intervention. Microarray showed that D-mannose increased the expression of miR669b, which was an inhibitor of adipogenesis. In addition, GSEA and western blot suggested that D-mannose suppressed the adipogenic differentiation via inhibiting the MAPK pathway and further inhibited the expression of proteins related to glucose metabolism and tumorigenesis. Conclusion. D-Mannose inhibits adipogenic differentiation of ADSCs via the miR669b/MAPK signaling pathway and may be further involved in the regulation of glucose metabolism and the inhibition of tumorigenesis.

2018 ◽  
Vol 27 (10) ◽  
pp. 1495-1503 ◽  
Author(s):  
Y. Meng ◽  
A. Eirin ◽  
X.-Y. Zhu ◽  
H. Tang ◽  
L.J. Hickson ◽  
...  

Mesenchymal stem cells (MSCs) constitute an important repair system, but may be impaired by exposure to cardiovascular risk factors. Consequently, adipose tissue-derived MSCs from pigs with the metabolic syndrome (MetS) show decreased vitality. A growing number of microRNAs (miRNAs) are recognized as key modulators of senescence, but their role in regulating senescence in MSC in MetS is unclear. We tested the hypothesis that MetS upregulates in MSC expression of miRNAs that can serve as post-transcriptional regulators of senescence-associated (SA) genes. MSCs were collected from swine abdominal adipose tissue after 16 weeks of Lean or Obese diet ( n = 6 each). Next-generation miRNA sequencing (miRNA-seq) was performed to identify miRNAs up-or down-regulated in MetS-MSCs compared with Lean-MSCs. Functional pathways of SA genes targeted by miRNAs were analyzed using gene ontology. MSC senescence was evaluated by p16 and p21 immunoreactivity, H2AX protein expression, and SA-β-Galactosidase activity. In addition, gene expression of p16, p21, MAPK3 (ERK1) and MAPK14, and MSC migration were studied after inhibition of SA-miR-27b. Senescence biomarkers were significantly elevated in MetS-MSCs. We found seven upregulated miRNAs, including miR-27b, and three downregulated miRNAs in MetS-MSCs, which regulate 35 SA genes, particularly MAPK signaling. Inhibition of miR-27b in cultured MSCs downregulated p16 and MARP3 genes, and increased MSC migration. MetS modulates MSC expression of SA-miRNAs that may regulate their senescence, and the p16 pathway seems to play an important role in MetS-induced MSC senescence.


2009 ◽  
Vol 21 (1) ◽  
pp. 238 ◽  
Author(s):  
E. Monaco ◽  
A. Lima ◽  
S. Wilson ◽  
S. Lane ◽  
M. Bionaz ◽  
...  

The quantity and accessibility of subcutaneous adipose tissue in humans make it an attractive alternative to bone marrow as a source of adult stem cells for therapeutic purposes. However, before such a cell source substitution can be proposed, the properties of stem cells derived from adipose tissue (ADSC) and bone marrow (BMSC), and their differentiated progeny must be compared in an animal model, such as swine, that adequately simulates the structure and physiology of humans. The objective of this work was to induce adult porcine stem cells isolated from subcutaneous adipose tissue and bone marrow to differentiate in vitro along the adipogenic lineage and to compare their transcript profile properties. ADSC and BMSC were isolated from subcutaneous adipose tissue and femurs of adult pigs, respectively, and differentiated along the adipogenic lineage using specific inducing medium. Cells were incubated up to 4 weeks with medium replaced every 3 days. Histological staining with Oil Red O was performed at 0, 2, 4, 7, 14, 21, 28 days of differentiation (dd) to confirm the adipogenic differentiation. RNA was also extracted at these time points. qPCR was performed on PPARG, DBI, ACSL1, CD36, CEBPA, DGAT2, ADFP, ADIPOQ, SCD. The geometrical mean of GTF2H3, NUBP, and PPP2CB was used as an internal control. Gene expression was analyzed using a mixed model of SAS with repeated time. The adipogenic differentiation of both ADSC and BMSC was confirmed by the Oil Red O positive staining. The relative mRNA abundance of all the genes at dd0 was similar between the ADSC and BMSC. The relative mRNA abundance of most of the genes was also similar between ADSC and BMSC throughout the adipogenic differentiation. ACSL1 and ADIPOQ had analogous expression patterns among the cell types. ACSL1 had relatively large mRNA abundance before differentiation, but ADIPOQ was barely detectable. As a consequence of differentiation, ACSL1 increased in relative mRNA abundance about 10-fold, whereas ADIPOQ mRNA increased about 1000-fold. Temporal expression patterns of SCD, DGAT2, and ADFP were similar. The increase in gene expression was >800% for SCD, >500% for ADFP, and >50 000% for DGAT2 after 7dd. ADSC had significantly higher expression of those genes compared to BMSC at 14 and 28dd. Both ADIPOQ and DGAT2 were almost undetectable prior to differentiation. mRNA expression of CD36 and DBI was similar with a significantly larger increase in expression of ADSC compared with BMSC. Relative mRNA abundance of CEBPA and PPARG was also larger in ADSC compared with BMSC; however, BMSC had a remarkable increase in temporal expression of those genes throughout adipogenic differentiation. These results suggest both cell types can differentiate towards the adipogenic lineage but with quantitatively different gene expression patterns. More investigation is needed before the ADSC can be considered a practical alternative source for stem cells in future human clinical applications. This research was supported by the Illinois Regenerative Medicine Institute.


2021 ◽  
Author(s):  
Yangge Du ◽  
Yunsong Liu ◽  
Yongsheng Zhou ◽  
Ping Zhang

Abstract Background: Bone is a rigid organ that provides support and physical protection to vital organs of the body. Several bone loss disorders are commonly associated with increased bone marrow adipose tissue. Bone marrow mesenchymal stromal/stem cells (BMSCs) are multipotent progenitors differentiating into osteoblasts, adipocytes, and chondrocytes. CDC20 is a co-activator of APC/C, required for full ubiquitin ligase activity. In our previous study, CDC20 promoted the osteogenic commitment of BMSCs and Cdc20 conditional knockout mice suggested a decline in bone mass. In this study, we investigated the function of CDC20 in the adipogenic differentiation of BMSCs and provided a new clue between adipogenesis and osteogenesis. Methods: Lentivirus containing CDC20 shRNA was used for CDC20 knockdown in hBMSCs. Primary mBMSCs were isolated from Cdc20f/f and Sp7-Cre;Cdc20f/f mice. Adipogenesis was examined by qRT-PCR and western blot analysis of adipogenic regulators, Oil Red O staining and transplantation into nude mice. The CDC20 knockout efficiency was determined through immunochemistry, qRT-PCR and western blot of bone marrow. Accumulation of adiposity was measured through histology and staining of bone sections. Results: CDC20 expression in hBMSCs was significantly decreased during adipogenic differentiation. Knockdown of CDC20 enhanced adipogenic differentiation of hBMSCs in vitro. CDC20-knockdown hBMSCs showed more adipose tissue–like constructs in H&E staining and Oil Red O staining. Sp7-Cre;Cdc20f/f mice presented increased adipocytes in bone marrow compared with control mice. mBMSCs from Sp7-Cre;Cdc20f/f mice exerted upregulated adipogenic differentiation. Conclusions: Our findings showed that knockdown of CDC20 enhanced adipogenesis of h(m)BMSCs in vitro and in vivo. Overall, CDC20 regulated both adipogenesis and osteogenesis of BMSCs, and may lead to the development of new therapeutic target for “fatty bone” and osteoporosis.


2021 ◽  
Author(s):  
Liang Yan ◽  
Bo Tu ◽  
Jun Yao ◽  
Jing Gong ◽  
Alessandro Carugo ◽  
...  

AbstractPancreatic ductal adenocarcinoma (PDAC) is almost universally lethal. A critical unmet need exists to explore essential susceptibilities in PDAC and identify druggable targets for tumor maintenance. This is especially challenging in the context of PDAC, in which activating mutations of KRAS oncogene (KRAS*) dominate the genetic landscape. By using an inducible KrasG12D-driven p53 deficient PDAC mouse model (iKras model), we demonstrate that RAF-MEK-MAPK signaling is the major effector for oncogenic Kras-mediated tumor maintenance. However, MEK inhibition has minimal therapeutic effect as single agent for PDAC both in vitro and in vivo. Although MEK inhibition partially downregulates the transcription of glycolysis genes, it surprisingly fails to suppress the glycolysis flux in PDAC cell, which is a major metabolism effector of oncogenic KRAS. Accordingly, In vivo genetic screen identified multiple glycolysis genes as potential targets that may sensitize tumor cells to MAPK inhibition. Furthermore, inhibition of glucose metabolism with low dose 2-deoxyglucose (2DG) in combination with MEK inhibitor dramatically induces apoptosis in KrasG12D-driven PDAC cell in vitro, inhibits xenograft tumor growth and prolongs the overall survival of genetically engineered mouse PDAC model. Molecular and metabolism analyses indicate that co-targeting glycolysis and MAPK signaling results in apoptosis via induction of lethal ER stress. Together, our work suggests that combinatory inhibition of glycolysis and MAPK pathway may serve as an alternative approach to target KRAS-driven PDAC.


2010 ◽  
Vol 22 (1) ◽  
pp. 351
Author(s):  
A. J. Maki ◽  
I. Omelogu ◽  
E. Monaco ◽  
M. E. McGee-Lawrence ◽  
R. M. Bradford ◽  
...  

During winter hibernation, grizzly bears (Ursus arctos horribilis) do not eat but instead rely on internal fat stores as a primary source of metabolic energy. The resulting seasonal fluctuations in appetite and body mass make the grizzly bear a naturally occurring animal model for human conditions such as obesity and anorexia. An in vitro model of hibernating bear stem cells might enhance our understanding of processes such as stem cell proliferation and differentiation. Mesenchymal stem cells, derived from bone marrow and adipose tissue among others, differentiate into adipocytes and might play important roles in energy metabolism. In the current study, we examined the in vitro viability and morphology of mesenchymal stem cells isolated from grizzly bear adipose tissue (ADSC) and bone marrow (BMSC); these ADSC and BMSCs underwent adipogenic differentiation for 0, 7, 14, 21, and 28 days. Bone marrow stem cells and ADSC were isolated using mechanical disaggregation, collagenase digestion, centrifugation, and plating onto tissue culture polystyrene. Cell viability and proliferation was quantified using the colony forming unit assay and a hemocytometer. Both stem cell types were differentiated into adipocytes using 10 μM insulin, 1 μM dexamethasone, and 0.5 mM isobutylmethylxanthine (all Sigma- Aldrich, St. Louis, MO, USA) with the addition of 10% fetal bovine (FBS) or bear serum from the active feeding period. Adipogenic differentiation was confirmed using Oil Red O and quantified using ImageJ. Statistical analysis was performed using an unpaired t-test between treatments of the same time point. All cells were isolated within 28 h of tissue harvest. Adipose-derived stem cells formed an average of 11 colonies (0.011%), whereas BMSC formed 1.5 colonies (0.0015%) per 100 000 cells. Doubling time forADSC was approximately 54 h in 10% FBS. BothADSC and BMSC had an initial spindle-shaped morphology, which gradually became more rounded during adipogenic differentiation. For bear serum at Day 28, ADSC had a significantly (P < 0.01) greater stained area per cell than did BMSC. In summary, both types of mesenchymal stem cells successfully differentiated into adipocytes and maintained viability. In conclusion, grizzly bear mesenchymal stem cells canbesuccessfully isolated, expanded, and differentiated in culture. These results allow for future studies using the bear as an in vitro model for fat metabolism during hibernation and active periods. This work was partially supported by the Carle Foundation Hospital, the Intel Scholar’s Research Program, USDA Multi-State Research Project W1171, and the Illinois Regenerative Medicine Institute (IDPH # 63080017). In addition, the authors would like to thank Agatha Luszpak for support with the analysis.


2017 ◽  
Vol 2017 ◽  
pp. 1-19 ◽  
Author(s):  
Yue Zhang ◽  
Xia-hui Ge ◽  
Xue-Jun Guo ◽  
Si-bin Guan ◽  
Xiao-ming Li ◽  
...  

This study aimed to investigate whether bone marrow-derived mesenchymal stem cells (BM-MSCs) can inhibit function of dendritic cells (DCs) by secreting Galectin-1 (Gal-1). BM-MSCs have been shown to inhibit the maturation and function of DCs, further inhibiting the activation and proliferation of T cells. However, the detailed mechanism remains unknown. In this current study, MSCs and DCs derived from mouse bone marrow were cocultured using Transwell culture plates under different in vitro conditions. The results showed that as the ratio of MSC to DC of the coculture system increased and the coculture time of the two cells prolonged, the concentrations of Gal-1, interleukin- (IL-) 10, and IL-12 in the supernatants were increased and the protein expression of Gal-1 on and within DCs was also enhanced. The phosphorylation of extracellular signal-regulated kinase (ERK) pathway in DCs was boosted, whereas p38 mitogen-activated protein kinase (MAPK) pathway phosphorylation was weakened. Meanwhile, the expression of costimulatory molecules on the surface of DCs was decreased, and the proliferative effect of DCs on allogeneic T cells was also decreased. Therefore, this present study indicated that Gal-1 secreted from MSCs upregulated expression of Gal-1 and stimulated formation of tolerance immunophenotype on DCs, where the underlying mechanism was the regulation of the MAPK signaling pathway in DCs, thereby inhibiting the function of DCs.


Antioxidants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 989
Author(s):  
Barbara Cisterna ◽  
Manuela Costanzo ◽  
Alice Nodari ◽  
Mirco Galiè ◽  
Serena Zanzoni ◽  
...  

In clinical practice, administration of low ozone (O3) dosages is a complementary therapy for many diseases, due to the capability of O3 to elicit an antioxidant response through the Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2)-dependent pathway. Nrf2 is also involved in the adipogenic differentiation of mesenchymal stem cells, and low O3 concentrations have been shown to stimulate lipid accumulation in human adipose-derived adult stem cells in vitro. Thus, O3 treatment is a promising procedure to improve the survival of explanted adipose tissue, whose reabsorption after fat grafting is a major problem in regenerative medicine. In this context, we carried out a pilot study to explore the potential of mild O3 treatment in preserving explanted murine adipose tissue in vitro. Scanning and transmission electron microscopy, Western blot, real-time polymerase chain reaction and nuclear magnetic resonance spectroscopy were used. Exposure to low O3 concentrations down in the degradation of the explanted adipose tissue and induced a concomitant increase in the protein abundance of Nrf2 and in the expression of its target gene Hmox1. These findings provide a promising background for further studies aimed at the clinical application of O3 as an adjuvant treatment to improve fat engraftment.


2020 ◽  
Vol 40 (6) ◽  
Author(s):  
Sunhye Shin ◽  
Asma S. El-Sabbagh ◽  
Brandon E. Lukas ◽  
Skylar J. Tanneberger ◽  
Yuwei Jiang

Abstract Adipose tissue, the storage of excessive energy in the body, secretes various proteins called adipokines, which connect the body’s nutritional status to the regulation of energy balance. Obesity triggers alterations of quantity and quality of various types of cells that reside in adipose tissue, including adipose stem cells (ASCs; referred to as adipose-derived stem/stromal cells in vitro). These alterations in the functionalities and properties of ASCs impair adipose tissue remodeling and adipose tissue function, which induces low-grade systemic inflammation, progressive insulin resistance, and other metabolic disorders. In contrast, the ability of ASCs to recruit new adipocytes when faced with caloric excess leads to healthy adipose tissue expansion, associated with lower amounts of inflammation, fibrosis, and insulin resistance. This review focuses on recent advances in our understanding of the identity of ASCs and their roles in adipose tissue development, homeostasis, expansion, and thermogenesis, and how these roles go awry in obesity. A better understanding of the biology of ASCs and their adipogenesis may lead to novel therapeutic targets for obesity and metabolic disease.


2015 ◽  
Vol 226 (1) ◽  
pp. 13-23 ◽  
Author(s):  
Nicoleta C Olarescu ◽  
Darlene E Berryman ◽  
Lara A Householder ◽  
Ellen R Lubbers ◽  
Edward O List ◽  
...  

GH influences adipocyte differentiation, but both stimulatory and inhibitory effects have been described. Adipose tissue-derived mesenchymal stem cells (AT-MSCs) are multipotent and are able to differentiate into adipocytes, among other cells. Canonical Wnt/β-catenin signaling activation impairs adipogenesis. The aim of the present study was to elucidate the role of GH on AT-MSC adipogenesis using cells isolated from male GH receptor knockout (GHRKO), bovine GH transgenic (bGH) mice, and wild-type littermate control (WT) mice. AT-MSCs from subcutaneous (sc), epididiymal (epi), and mesenteric (mes) AT depots were identified and isolated by flow cytometry (Pdgfrα+Sca1+Cd45−Ter119−cells). Theirin vitroadipogenic differentiation capacity was determined by cell morphology and real-time RT-PCR. Using identicalin vitroconditions, adipogenic differentiation of AT-MSCs was only achieved in the sc depot, and not in epi and mes depots. Notably, we observed an increased differentiation in cells isolated from sc-GHRKO and an impaired differentiation of sc-bGH cells as compared to sc-WT cells.Axin2, a marker of Wnt/β-catenin activation, was increased in mature sc-bGH adipocytes, which suggests that activation of this pathway may be responsible for the decreased adipogenesis. Thus, the present study demonstrates that i) adipose tissue in mice has a well-defined population ofPdgfrα+Sca1+MSCs; ii) the differentiation capacity of AT-MSCs varies from depot to depot regardless of GH genotype; iii) the lack of GH action increases adipogenesis in the sc depot; and iv) activation of the Wnt/β-catenin pathway might mediate the GH effect on AT-MSCs. Taken together, the present results suggest that GH diminishes fat mass in part by altering adipogenesis of MSCs.


Sign in / Sign up

Export Citation Format

Share Document