scholarly journals Attitude Measurement of Special Aircraft Based on Geomagnetic and Angular Velocity Sensors

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Zhang Pingan ◽  
Wang Wei ◽  
Gao Ming ◽  
Che Jinli

Aiming at the problem of attitude test of special aircraft in flight, the combined test technology of geomagnetic sensor and angular velocity sensor is studied. The mathematical model of special aircraft roll attitude test based on combined measurement is established. The error models of special aircraft roll angle based on yaw angle input and pitch angle input are derived, respectively, and based on the actual flight trajectory data of aircraft, the mathematical model of special aircraft roll attitude test is established The simulation results show that the roll angle error input by yaw angle is between -0.4° and 0.9°, while the roll angle error input by pitch angle is between -0.4° and 1.2°, which shows that the calculation accuracy of roll angle input by yaw angle is higher, and the existence of magnetic measurement blind area is verified. In this paper, the method of judging the blind area of geomagnetic survey and the algorithm model of eliminating the influence of blind area are proposed.

2013 ◽  
Vol 336-338 ◽  
pp. 180-184 ◽  
Author(s):  
Li Long ◽  
He Zhang

The trajectory correction capability of the Simple guided munitions is directly affected by measurement accuracy of attitude angle. A gesture detection method based on geomagnetic gyro combination is proposed in this paper in order to detect the projectile flight attitude, The yaw angle of the projectile is solved by using runge-kutta algorithm with angle information of MEMS gyro. Then roll angle and pitch angle of the projectile is solved by magnetic field component of the three-axis magnetic sensor. Finally, the whole attitude detection system is installed in three-axis non-magnetic turntable to have a performance test. Experimental results show that the attitude solution results error is small. Nearby blind area, the roll angle error reduced to 5° and the pitch angle error reduced to 4°. In other locations, the roll angle error reduced to 2° and the pitch angle error reduce to 1°. The measurement accuracy increased nearly tenfold, can satisfy the trajectory correction demand of simple guidance ammunition.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Shuang-biao Zhang ◽  
Xing-cheng Li ◽  
Zhong Su

Due to the fact that attitude error of vehicles has an intense trend of divergence when vehicles undergo worsening coning environment, in this paper, the model of dynamic coning environment is derived firstly. Then, through investigation of the effect on Euler attitude algorithm for the equivalency of traditional attitude algorithm, it is found that attitude error is actually the roll angle error including drifting error and oscillating error, which is induced directly by dynamic coning environment and further affects the pitch angle and yaw angle through transferring. Based on definition of the cone frame and cone attitude, a cone algorithm is proposed by rotation relationship to calculate cone attitude, and the relationship between cone attitude and Euler attitude of spinning vehicle is established. Through numerical simulations with different conditions of dynamic coning environment, it is shown that the induced error of Euler attitude fluctuates by the variation of precession and nutation, especially by that of nutation, and the oscillating frequency of roll angle error is twice that of pitch angle error and yaw angle error. In addition, the rotation angle is more competent to describe the spinning process of vehicles under coning environment than Euler angle gamma, and the real pitch angle and yaw angle are calculated finally.


2014 ◽  
Vol 527 ◽  
pp. 140-145
Author(s):  
Da Xu Zhao ◽  
Bai Chen ◽  
Guo Zhong Shou ◽  
Yu Qi Gu

In view of the existing problems of traditional interventional catheters, particularly poor activity, operation difficulty and mass blind area, a novel interventional catheter with a cable-driven active head-end is proposed, and a prototype was built to verify the performance. This paper deals with the kinematics and dynamics of the cable-driven prototype, a dynamic model based on Kanes method combined with screw theory was presented in this paper. According the mathematical model and the prototypes structure, the analysis of kinematics and dynamics of active head-end-end is done in the environment of Mathematica. The needed driving forces of every joint when the system moving along planned trajectory are calculated. The results can provide a basis for the structure design and motion control of the interventional active catheter.


2014 ◽  
Vol 912-914 ◽  
pp. 1727-1729
Author(s):  
Ming Yang Zhang ◽  
Li Dai ◽  
Cong Liu

The ship yaw angle and the changes affect the ships collision accidents, the ship yaw angle has strong randomness. Then this paper establishes the mathematical model to simulate the probability distribution of yaw angle,Which can very well eliminate the harm caused by the ship yaw angle.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6367
Author(s):  
Ruotong Peng ◽  
Tong Zheng ◽  
Xing Lu ◽  
Xianze Xu ◽  
Fengqiu Xu

The existing simulation method for the control of linear or planar magnetically levitated actuators always ignores the characteristics of the real physical object, which deteriorates the accuracy of the simulation. In this work, the proposed emulator for the magnetically levitated actuator is developed to consider both the force characteristics and the control algorithm. To model the real controlled object, the mathematical model for 1D (one-dimensional) and 2D (two-dimensional) magnetic arrays is derived where the yaw angle is taken into consideration using the coordinate transformation. The solution of the mathematical model is compared with the commercial BEM (boundary element method) software and the measurements from a force and torque testing setup to highlight the accuracy of the proposed mathematical model. Compared with the traditional simulation method of the motion control systems founded on the simplified system transfer function, the proposed simulation method has higher consistency and is closer to reality. The accuracy and efficiency of the proposed magnetic force model are further verified by the emulator based on the numerical force model and the testing data of the real setup.


2016 ◽  
Vol 20 (2) ◽  
pp. 71-79
Author(s):  
Karol Garbiak ◽  
Jan Jurga

AbstractThe article presents analysis of the mathematical model for determination of a momentary dose of spray applied by the field sprayer nozzles which move on the curve with the forward speed the value of which may differ from the speed accepted for regulation. Regulation speed and regulation dose, real forward speed of a sprayer, angular velocity during the curve movement, and the coefficient of the nozzle location towards the axis of the sprayer turn are independent variables in the suggested model. Based on the mathematical model, plots were drawn and analyses of relation of the spray dose to particular variables were carried out including inter alia, a repeated field spray, application of a dose which considerably differs from the regulation dose and diversity of the dose on the working width of the sprayer.


Author(s):  
K H A Abood ◽  
R A Khan

A mathematical model of a railway carriage moving on tangent tracks is constructed by deriving the equations of motion concern the model in which single-point and two-point wheel–rail contacts are considered. The presented railway carriage model comprises front and rear simple conventional bogies with two leading and trailing wheelsets attached to each bogie. The railway carriage is modeled using 31 degrees of freedom which govern vertical displacement, lateral displacement, roll angle, and yaw angle dynamic response of wheelset, whereas vertical displacement, lateral displacement, roll angle, pitch angle, and yaw angle dynamic response carbody and each of the two bogies were also studied. Linear stiffness and damping parameters of longitudinal, lateral, and vertical primary and secondary suspensions are provided to the railway carriage model. Combination of linear Kalker’s theory and non-linear Heuristic model is adopted to calculate the creep forces introduced at wheel and rail contact patch area. Computer-aided simulation is constructed to solve the governing differential equations of the mathematical model using Runge–Kutta fourth-order method. Principle of limit cycle and phase plane approach is applied to realize the stability and evaluate the concerning critical hunting velocity at which the railway carriage starts to hunt. The numerical simulation model is used to study the influence of vertical secondary suspension spring stiffness on the ride passenger comfort of railway carbody at speeds below and at critical hunting velocity. High magnitudes of vertical secondary spring stiffness suspension introduce undesirable roll and yaw dynamic responses in which affect ride passenger comfort at critical hunting velocity.


2011 ◽  
Vol 5 (1) ◽  
pp. 19
Author(s):  
Karim H. Ali Abood ◽  
R. A. Khan

A mathematical model of a railway carriage moving on tangent tracks is constructed by deriving the equations of motion concerning the model in which single-point and two-point wheel-rail contact is considered. The presented railway carriage model comprises of carbody and front and rear simple conventional bogie with two leading and trailing wheelets attached to each bogie. The railway carriage is modeled by 31 degrees of freedom which govern vertical displacement, lateral displacement, roll angle and yaw angle dynamic response of wheelset whereas vertical displacement, lateral displacement, roll angle, pitch angle and yaw angle dynamic response of carbody and each of the two bogies. Linear stiffness and damping parameters of longitudinal, lateral and vertical primary and secondary suspensions are provided to the railway carriage model. Combination of linear Kalker's theory and nonlinear Heuristic model is adopted to calculate the creep forces in which introduced at wheel and rail contact patch area. Computer aided-simulation is constructed to solve the governing differential equations of the mathematical model using Runge-Kutta fourth order method. Principle of limit cycle and phase plane approach is applied to realize the stability and to evaluate the concerning critical hunting velocity at which railway carriage starts to hunt. Numerical simulation model is used to study the dynamic responses of a railway carriage bogie subjected to specific parameters of wheel conicity and primary suspension characteristics. A comparison to study the sensitivity of railway carriage bogie to dynamic responses is also presented at different vertical primary suspension stiffness parameters.


Author(s):  
V. S. Safaryan

The importance of the problem of the static stability of the stationary mode of the power system for its operation is extremely high. The investigation of the static stability of the power system is a subject of a number of works, but the problems of static stability of the stationary points of an autonomous synchronous generator are given little attention. The article considers transient and resonant (stationary) modes of the generator under active-inductive and active-capacitive loads. Mathematical model of transients in a natural form and in the coordinate system d, q are plotted. It is discovered that the mathematical model of the transition process of an autonomous synchronous generator is identical to the mathematical model of the transition process of the synchronous machine under three-phase short circuit. Electromagnetic transients of an autonomous synchronous generator are described by a system of linear autonomous differential equations with constant coefficients. However, the equivalent circuit of a generator contains dependent sources. We investigated the stability of stationary motion of an autonomous synchronous generator at a given angular velocity of rotation of the rotor. The condition for the existence and stability of stationary points of an autonomous synchronous generator is derived. The condition for the existence of stationary points of such a generator does not depend on the active load resistance and stator windings, and inductance of the rotor. The determining of stationary points of the generator is reduced to finding roots of a polynomial of the fourth degree. The graphs of electromagnetic torque dependencies on the angular velocity of rotation of the rotor (mechanical characteristics) are plotted. The equivalent circuits, corresponding to the equations of the transition process of an autonomous synchronous generator, are featured as well.


Sign in / Sign up

Export Citation Format

Share Document