scholarly journals ZNRD1 and Its Antisense Long Noncoding RNA ZNRD1-AS1 Are Oppositely Regulated by Cold Atmospheric Plasma in Breast Cancer Cells

2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Hyeon Woo Kim ◽  
Dawoon Jeong ◽  
Juyeon Ham ◽  
Heejoo Kim ◽  
Hwee Won Ji ◽  
...  

Cold atmospheric plasma (CAP) has been recognized as a potential alternative or supplementary cancer treatment tool, which is attributed by its selective antiproliferation effect on cancer cells over normal cells. Standardization of the CAP treatment in terms of biological outputs such as cell growth inhibition and gene expression change is essential for its clinical application. This study aims at identifying genes that show consistent expression profiles at a specific CAP condition, which could be used to monitor whether CAP is an appropriate treatment to biological targets. To do this, genes showing differential expression by two different CAP treatment conditions were screened in the MCF-7 breast cancer cells. As a result, ZNRD1 was identified as a potential marker with being consistently upregulated by 600 s but downregulated by the 10×30 s CAP treatment scheme. Expression of ZNRD1 was increased in breast cancer tissues compared to normal tissues, judged by cancer tissue database analysis, and supported by the antiproliferation after siRNA-induced downregulation in MCF-7. Interestingly, the antisense long noncoding RNA (lncRNA) of ZNRD1, ZNRD1-AS1, was regulated to the opposite direction of ZNRD1 by CAP. The siRNA-based qPCR analysis indicates that ZNRD1 downregulates ZNRD1-AS1, but not vice versa. ZNRD1-AS1 was shown to increase a few cis-genes such as HLA-A, HCG9, and PPP1R11 that were also regulated by CAP. Altogether, this study identified a pair of gene and its antisense lncRNA of which expression is precisely controlled by CAP in a dose-dependent manner. These genes could help elucidate the molecular mechanism how CAP regulates lncRNAs in cancer cells.

Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2011 ◽  
Author(s):  
Sungbin Park ◽  
Heejoo Kim ◽  
Hwee Won Ji ◽  
Hyeon Woo Kim ◽  
Sung Hwan Yun ◽  
...  

Paclitaxel (Tx) is a widely used therapeutic chemical for breast cancer treatment; however, cancer recurrence remains an obstacle for improved prognosis of cancer patients. In this study, cold atmospheric plasma (CAP) was tested for its potential to overcome the drug resistance. After developing Tx-resistant MCF-7 (MCF-7/TxR) breast cancer cells, CAP was applied to the cells, and its effect on the recovery of drug sensitivity was assessed in both cellular and molecular aspects. Sensitivity to Tx in the MCF-7/TxR cells was restored up to 73% by CAP. A comparison of genome-wide expression profiles between the TxR cells and the CAP-treated cells identified 49 genes that commonly appeared with significant changes. Notably, 20 genes, such as KIF13B, GOLM1, and TLE4, showed opposite expression profiles. The protein expression levels of selected genes, DAGLA and CEACAM1, were recovered to those of their parental cells by CAP. Taken together, CAP inhibited the growth of MCF-7/TxR cancer cells and recovered Tx sensitivity by resetting the expression of multiple drug resistance–related genes. These findings may contribute to extending the application of CAP to the treatment of TxR cancer.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Natalia Lemos Chaves ◽  
Danilo Aquino Amorim ◽  
Cláudio Afonso Pinho Lopes ◽  
Irina Estrela-Lopis ◽  
Julia Böttner ◽  
...  

Abstract Background Nanocarriers have the potential to improve the therapeutic index of currently available drugs by increasing drug efficacy, lowering drug toxicity and achieving steady-state therapeutic levels of drugs over an extended period. The association of maghemite nanoparticles (NPs) with rhodium citrate (forming the complex hereafter referred to as MRC) has the potential to increase the specificity of the cytotoxic action of the latter compound, since this nanocomposite can be guided or transported to a target by the use of an external magnetic field. However, the behavior of these nanoparticles for an extended time of exposure to breast cancer cells has not yet been explored, and nor has MRC cytotoxicity comparison in different cell lines been performed until now. In this work, the effects of MRC NPs on these cells were analyzed for up to 72 h of exposure, and we focused on comparing NPs’ therapeutic effectiveness in different cell lines to elect the most responsive model, while elucidating the underlying action mechanism. Results MRC complexes exhibited broad cytotoxicity on human tumor cells, mainly in the first 24 h. However, while MRC induced cytotoxicity in MDA-MB-231 in a time-dependent manner, progressively decreasing the required dose for significant reduction in cell viability at 48 and 72 h, MCF-7 appears to recover its viability after 48 h of exposure. The recovery of MCF-7 is possibly explained by a resistance mechanism mediated by PGP (P-glycoprotein) proteins, which increase in these cells after MRC treatment. Remaining viable tumor metastatic cells had the migration capacity reduced after treatment with MRC (24 h). Moreover, MRC treatment induced S phase arrest of the cell cycle. Conclusion MRC act at the nucleus, inhibiting DNA synthesis and proliferation and inducing cell death. These effects were verified in both tumor lines, but MDA-MB-231 cells seem to be more responsive to the effects of NPs. In addition, NPs may also disrupt the metastatic activity of remaining cells, by reducing their migratory capacity. Our results suggest that MRC nanoparticles are a promising nanomaterial that can provide a convenient route for tumor targeting and treatment, mainly in metastatic cells.


2019 ◽  
Vol 145 (9) ◽  
pp. 2478-2487 ◽  
Author(s):  
Liang‐Chih Liu ◽  
Yuan‐Liang Wang ◽  
Pei‐Le Lin ◽  
Xiang Zhang ◽  
Wei‐Chung Cheng ◽  
...  

PLoS ONE ◽  
2013 ◽  
Vol 8 (9) ◽  
pp. e73741 ◽  
Author(s):  
Mian Wang ◽  
Benjamin Holmes ◽  
Xiaoqian Cheng ◽  
Wei Zhu ◽  
Michael Keidar ◽  
...  

2011 ◽  
Vol 25 (1) ◽  
pp. 72-82 ◽  
Author(s):  
Yuanzhong Wang ◽  
Dujin Zhou ◽  
Sheryl Phung ◽  
Selma Masri ◽  
David Smith ◽  
...  

Serum- and glucocorticoid-inducible kinase 3 (SGK3) is a protein kinase of the AGC family of protein kinase A, protein kinase G, and protein kinase C and functions downstream of phosphatidylinositol 3-kinase (PI3K). Recent study revealed that SGK3 plays a pivotal role in Akt/protein kinase B independent signaling downstream of oncogenic PI3KCA mutations in breast cancer. Here we report that SGK3 is an estrogen receptor (ER) transcriptional target and promotes estrogen-mediated cell survival of ER-positive breast cancer cells. Through a meta-analysis on 22 microarray studies of breast cancer in the Oncomine database, we found that the expression of SGK3 is significantly higher (5.7-fold, P < 0.001) in ER-positive tumors than in ER-negative tumors. In ER-positive breast cancer cells, SGK3 expression was found to be induced by 17β-estradiol (E2) in a dose- and time-dependent manner, and the induction of SGK3 mRNA by E2 is independent of newly synthesized proteins. We identified two ERα-binding regions at the sgk3 locus through chromatin immunoprecipitation with massively parallel DNA sequencing. Promoter analysis revealed that ERα stimulates the activity of sgk3 promoters by interaction with these two ERα-binding regions on E2 treatment. Loss-of-function analysis indicated that SGK3 is required for E2-mediated cell survival of MCF-7 breast carcinoma cells. Moreover, overexpression of SGK3 could partially protect MCF-7 cells against apoptosis caused by antiestrogen ICI 182,780. Together, our study defines the molecular mechanism of regulation of SGK3 by estrogen/ER and provides a new link between the PI3K pathway and ER signaling as well as a new estrogen-mediated cell survival mechanism mediated by SGK3 in breast cancer cells.


2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Baiyao Wang ◽  
Jieling Zheng ◽  
Rong Li ◽  
Yunhong Tian ◽  
Jie Lin ◽  
...  

Abstract Radiotherapy is essential to treat breast cancer and microRNA (miRNA) miR-200c is considered as a radiosensitizer of breast cancer. However, the molecular mechanisms by which miR-200c regulates radiosensitivity remain largely unknown. In the present study, we showed that induction of miR-200c led to widespread alteration in long noncoding RNA (lncRNA) expression in breast cancer cells. We identified lncRNA LINC02582 as a target of miR-200c. Inhibition of LINC02582 expression increased radiosensitvity, while overexpression of LINC02582 promoted radioresistance. Mechanistically, LINC02582 interacts with deubiquitinating enzyme ubiquitin specific peptidase 7 (USP7) to deubiquitinate and stabilize checkpoint kinase 1 (CHK1), a critical effector kinase in DNA damage response, thus promoting radioresistance. Furthermore, we detected an inverse correlation between the expression of miR-200c vs. LINC02582 and CHK1 in breast cancer samples. These findings identified LINC02582 as a downstream target of miR-200c linking miR-200c to CHK1, in which miR-200c increases radiosensitivity by downregulation of CHK1.


2009 ◽  
Vol 16 (4) ◽  
pp. 1185-1195 ◽  
Author(s):  
Céline Van Themsche ◽  
Sophie Parent ◽  
Valérie Leblanc ◽  
Caroline Descôteaux ◽  
Anne-Marie Simard ◽  
...  

We have previously reported the synthesis of VP-128, a new 17β-oestradiol (E2)-linked platinum(II) hybrid with high affinity for oestrogen receptor α (ERα). In the present study, we have investigated the anti-tumour activity of VP-128 towards breast cancer cells in vitro and in vivo. We used human ERα-positive (MCF-7) and -negative (MDA-MB-468) cells as a model for treatment with increasing doses of VP-128, cisplatin or E2 in vitro and for xenograft experiments in nude mice in vivo. Compared with cisplatin, VP-128 showed markedly improved in vitro and in vivo anti-tumour activity towards ERα-positive MCF-7 breast cancer cells, without increased systemic toxicity. In these caspase-3-deficient cells, treatment with VP-128 overcame weak cellular sensitivity to cisplatin in vitro and in vivo. In these cells, only the hybrid induced apoptosis in an ERα-dependent manner, inactivated both X-linked inhibitor of apoptosis protein and Akt, and induced selective nuclear accumulation of ERα and the expression of ER-regulated genes c-myc and tff1, which was blocked by ERα-specific antagonist ICI 282 780. In the case of ERα-negative MDA-MB-468 cells, VP-128, but not cisplatin, induced nuclear accumulation of apoptosis-inducing factor and inhibited c-myc expression. However, VP-128 did not show enhanced in vivo anti-tumour activity compared with cisplatin. These results reveal two different modes of action for VP-128 in ERα-positive and -negative breast cancer cells, and highlight the promising therapeutic value of this unique E2-platinum hybrid for selective targeting of hormone-dependent cancers.


Sign in / Sign up

Export Citation Format

Share Document