scholarly journals Efficiency-House Optimization to Widen the Operation Range of the Double-Suction Centrifugal Pump

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Wenjie Wang ◽  
Majeed Koranteng Osman ◽  
Ji Pei ◽  
Shouqi Yuan ◽  
Jian Cao ◽  
...  

Most pumping machineries have a problem of obtaining a higher efficiency over a wide range of operating conditions. To solve that problem, an optimization strategy has been designed to widen the high-efficiency range of the double-suction centrifugal pump at design (Qd) and nondesign flow conditions. An orthogonal experimental scheme is therefore designed with the impeller hub and shroud angles as the decision variables. Then, the “efficiency-house” theory is introduced to convert the multiple objectives into a single optimization target. A two-layer feedforward artificial neural network (ANN) and the Kriging model were combine based on a hybrid approximate model and solved with swarm intelligence for global best parameters that would maximize the pump efficiency. The pump performance is predicted using three-dimensional Reynolds-averaged Navier–Stokes equations which is validated by the experimental test. With ANN, Kriging, and a hybrid approximate model, an optimization strategy is built to widen the high-efficiency range of the double-suction centrifugal pump at overload conditions by 1.63%, 1.95%, and 4.94% for flow conditions 0.8Qd, 1.0Qd, and 1.2Qd, respectively. A higher fitting accuracy is achieved for the hybrid approximation model compared with the single approximation model. A complete optimization platform based on efficiency-house and the hybrid approximation model is built to optimize the model double-suction centrifugal pump, and the results are satisfactory.

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 607
Author(s):  
Tommy R. Powell ◽  
James P. Szybist ◽  
Flavio Dal Forno Chuahy ◽  
Scott J. Curran ◽  
John Mengwasser ◽  
...  

Modern boosted spark-ignition (SI) engines and emerging advanced compression ignition (ACI) engines operate under conditions that deviate substantially from the conditions of conventional autoignition metrics, namely the research and motor octane numbers (RON and MON). The octane index (OI) is an emerging autoignition metric based on RON and MON which was developed to better describe fuel knock resistance over a broader range of engine conditions. Prior research at Oak Ridge National Laboratory (ORNL) identified that OI performs reasonably well under stoichiometric boosted conditions, but inconsistencies exist in the ability of OI to predict autoignition behavior under ACI strategies. Instead, the autoignition behavior under ACI operation was found to correlate more closely to fuel composition, suggesting fuel chemistry differences that are insensitive to the conditions of the RON and MON tests may become the dominant factor under these high efficiency operating conditions. This investigation builds on earlier work to study autoignition behavior over six pressure-temperature (PT) trajectories that correspond to a wide range of operating conditions, including boosted SI operation, partial fuel stratification (PFS), and spark-assisted compression ignition (SACI). A total of 12 different fuels were investigated, including the Co-Optima core fuels and five fuels that represent refinery-relevant blending streams. It was found that, for the ACI operating modes investigated here, the low temperature reactions dominate reactivity, similar to boosted SI operating conditions because their PT trajectories lay close to the RON trajectory. Additionally, the OI metric was found to adequately predict autoignition resistance over the PT domain, for the ACI conditions investigated here, and for fuels from different chemical families. This finding is in contrast with the prior study using a different type of ACI operation with different thermodynamic conditions, specifically a significantly higher temperature at the start of compression, illustrating that fuel response depends highly on the ACI strategy being used.


Author(s):  
E. Benvenuti ◽  
B. Innocenti ◽  
R. Modi

This paper outlines parameter selection criteria and major procedures used in the PGT 25 gas turbine power spool aerodynamic design; significant results of the shop full-load tests are also illustrated with reference to both overall performance and internal flow-field measurements. A major aero-design objective was established as that of achieving the highest overall performance levels possible with the matching to latest generation aero-derivative gas generators; therefore, high efficiencies were set as a target both for the design point and for a wide range of operating conditions, to optimize the turbine’s uses in mechanical drive applications. Furthermore, the design was developed to reach the performance targets in conjunction with the availability of a nominal shaft speed optimized for the direct drive of pipeline booster centrifugal compressors. The results of the full-load performance testing of the first unit, equipped with a General Electric LM 2500/30 gas generator, showed full attainment of the design objectives; a maximum overall thermal efficiency exceeding 37% at nominal rating and a wide operating flexibility with regard to both efficiency and power were demonstrated.


2021 ◽  
Author(s):  
Stefan D. Cich ◽  
J. Jeffrey Moore ◽  
Chris Kulhanek ◽  
Meera Day Towler ◽  
Jason Mortzheim

Abstract An enabling technology for a successful deployment of the sCO2 close-loop recompression Brayton cycle is the development of a compressor that can maintain high efficiency for a wide range of inlet conditions due to large variation in properties of CO2 operating near its dome. One solution is to develop an internal actuated variable Inlet Guide Vane (IGV) system that can maintain high efficiency in the main and re-compressor with varying inlet temperature. A compressor for this system has recently been manufactured and tested at various operating conditions to determine its compression efficiency. This compressor was developed with funding from the US DOE Apollo program and industry partners. This paper will focus on the design and testing of the main compressor operating near the CO2 dome. It will look at design challenges that went into some of the decisions for rotor and case construction and how that can affect the mechanical and aerodynamic performance of the compressor. This paper will also go into results from testing at the various operating conditions and how the change in density of CO2 affected rotordynamics and overall performance of the machine. Results will be compared to expected performance and how design changes were implanted to properly counter challenges during testing.


2015 ◽  
Vol 24 (09) ◽  
pp. 1550132 ◽  
Author(s):  
Li-Ye Cheng ◽  
Xin-Quan Lai

A mode-selectable oscillator (OSC) with variable duty cycle for improved charge pump efficiency is proposed in this paper. The novel OSC adjusts its duty cycle according to the operation mode of the charge pump, thus improves the charge-pump efficiency and dynamic performance. The control of variable duty cycle is implemented in digital logic hence it provides robust noise immunity and instantaneous response. The OSC and the charge-pump have been implemented in a 0.6-μm 40-V CMOS process. Experimental results show that the peak efficiency is 92.7% at 200-mA load, the recovery time is less than 25 μs and load transient is 15 mV under 500-mA load variation. The system is able to work under a wide range of input voltage (V IN ) in all modes with low EMI.


2006 ◽  
Vol 128 (5) ◽  
pp. 937-946 ◽  
Author(s):  
José González ◽  
Carlos Santolaria

A relationship between the global variables and the dynamic flow structure numerically obtained for a low specific speed centrifugal pump is presented in this paper. A previously developed unsteady flow model is used to correlate the dynamic field with the flow characteristics inside the impeller and volute of a single-stage commercial pump. Actually, the viscous incompressible Navier-Stokes equations are solved within a 3D unsteady flow model. A sliding mesh technique is applied to take into account the impeller-volute interaction. After the numerical model has been successfully compared with the experimental data for the unsteady pressure fluctuations pattern in the volute shroud, a new step is proposed in order to correlate the observed effects with the flow structure inside the pump. In particular, the torque as a function of the relative position of the impeller blades is related to the blades loading, and the secondary flow in the volute is related to the different pressure patterns numerically obtained. Local flow analysis and qualitative study of the helicity in different volute sections is performed. The main goal of the study presented is the successful correlation of local and global parameters for the flow in a centrifugal pump. The pressure forces seem to be the main driven mechanism to establish the flow features both in the impeller and volute, for a wide range of operating conditions.


Author(s):  
Phillip Limbach ◽  
Marius Kimoto ◽  
Christian Deimel ◽  
Romuald Skoda

A numerical analysis is performed to assess the capability of common simulation methods, in particular Ansys CFX, to predict the performance and NPSH curve of a centrifugal pump at very low specific speed for both, design and off-design conditions. In all cases, we use an entire numerical model containing the impeller, the volute casing, the side chambers as well as suction pipe and pressure pipe. A three-dimensional setup is used, testing the following numerical models: steady, i.e. frozen rotor model, unsteady model accounting for the impeller movement and the relative impeller-volute position, single-phase flow as well as cavitating flow conditions. The global performance of the pump is assessed in terms of pressure head, power consumption and pump efficiency for single-phase flow. Furthermore, the drop of the pump head and Net Positive Suction Head (NPSH) characteristics are analyzed for cavitating flow conditions. Numerical results are validated against experimental data. Regarding non-cavitating flow conditions, the trend of the characteristic curves is well predicted, while absolute performance values differ from measured data significantly. The results of steady and unsteady calculations deviate from each other by less than 2%. Concerning cavitating flow, unsteady simulations have to be performed in particular for overload conditions, in order to obtain convergence of the solver. The trend of the measured NPSH curve is well captured with default cavitation model parameters. For nominal and overload, the predicted NPSH curve underestimates the measured one significantly.


Author(s):  
Jia Mi ◽  
Lin Xu ◽  
Sijing Guo ◽  
Mohamed A. A. Abdelkareem ◽  
Lingshuai Meng ◽  
...  

Hydraulic-electromagnetic Energy-regenerative Shock Absorber (HESA) has been proposed recently, with the purpose of mitigating vibration in vehicle suspensions and recovering vibration energy traditionally dissipated by oil dampers simultaneously. The HESA is composed of hydraulic cylinder, check valves, accumulators, hydraulic motor, generator, pipelines and so on. The energy conversion from hydraulic energy to mechanical energy mainly depends on the hydraulic motor between two accumulators. Hence, the dimension match and parameter settings of hydraulic motor for the HESA are extremely important for efficiency of the whole system. This paper studies the methods and steps for dimension matching and parameter settings of the hydraulic motor in a case of a typical commercial vehicle. To evaluate suspension’s vibration characteristics, experiments on the target tour bus have been done. Simulations are conducted to investigate the effects of the hydraulic motor in different working conditions. The simulation results verify that the methods and steps adopted are accurate over a wide range of operating conditions and also show that appropriate matching and parameter settings of the hydraulic motor attached in the HESA can work with high efficiency and then effectively improving energy conversion efficiency for the whole system. Therefore, the theory of the matching progress can guide the future design of an HESA.


Author(s):  
Dirk Anding ◽  
Henning Ressing ◽  
Klaus Hörmeyer ◽  
Roland Pisch ◽  
Kai Ziegler

Blade vibrations resulting in alternating stresses are often the critical factor in determining blade life. Indeed, many of the failures experienced by turbomachinery blades occur due to high-cycle fatigue caused by blade vibrations. These vibrations can arise either through self-excited oscillations known as flutter or through aerodynamic forcing of the blades from factors such as periodic wakes from up and/or downstream vanes or unsteady flow phenomena such as compressor surge. The current paper deals with the design and the analytical and experimental verification of the axial blading for a new generation of industrial compressors, a hybrid axial compressor that combines the advantages of conventional industrial compressors — broad operating range and high efficiency — with the advantages of gas turbine compressors — high power-density and high stage pressure ratios. Additionally, the surge robustness of this novel compressor blading has been greatly improved. During the development phase extensive efforts were made to ensure safe operation for future service life. This was achieved by designing blades that will not flutter, do not have high resonance amplitudes throughout their entire operating range and are extremely robust against surge. This strongly increased robustness of the new compressor blading was achieved by the implementation of a “wide-chord” blade design in all rotor blade rows in combination with a proper tuning of resonance frequencies throughout the entire operating range. For the verification of the new blading well-established methods accepted by industry were used such as CFD and FEA. Furthermore, coupling of the two into a method referred to as Fluid Structure Interaction (FSI) was used to more closely investigate the interaction of flow and structural dynamics phenomena. These analytical techniques have been used in conjunction with extensive testing of a scaled test compressor, which was operated at conditions of dynamic similitude (matching of scaled blade vibration frequencies, flow conditions, and Mach number) with full-scale operational conditions. Strain gauges placed on the blades and a state of the art technique known as “tip timing” were used to verify blade vibrations over a wide range of combinations of guide vane positions and rotational speeds. No propensity was found of any of the blades to develop high vibration amplitudes at any of the operating conditions investigated in the rig tests. The comparison of non-linear forced response analyses and the rig test results from strain gauges and tip timing showed close agreement, verifying the analysis techniques used. In conclusion it can be stated that the blade design exhibits a very high level of safety against vibrations within the entire operating range and during surge.


Author(s):  
Yan Jin ◽  
Chao Liu ◽  
Jiren Zhou ◽  
Fangping Tang

Submersible tubular pump is particularly suitable for ultra-low head (net head less than 2 m) pumping station which can reduce the excavation depth, lower engine room height, simplify hydraulic structure, and save civil engineering costs. Submersible tubular pump with smaller motor unit can reduce the flow resistance. The flow field inside the submersible tubular pump is simulated in a commercial computation fluid dynamics (CFD) code FLUENT. The RNG k-ε turbulent model and SIMPLE algorithm are applied to analyze the full passage of a submersible tubular pump, the performance of pump such as head, shaft power and efficiency are predicted based on the calculation of different operating conditions. The simulations are carried out over a wide range of operating points, from 0.8 of the reference mass flow rate at the best efficiency point (BEP) to the 1.28 of the BEP flow rate at the same rotating speed. For verifying the accuracy and reliability of the calculation results, a model test is conducted. The comparison of simulation results and the experiment data show that the calculation performances are agree with the experiment results in the high efficiency area and large discharge condition, but in the condition of low discharge, it exists deviations between the two results. Compare with the numerical simulation and experiment, which can provide more evidences for the hydraulic performance prediction and optimization design of submersible tubular pump pumping system.


Author(s):  
Paht Juangphanich ◽  
Guillermo Paniagua

Recent progress in additive manufacturing has enabled opportunities to explore novel stator rim geometries which can be implemented to improve cooling strategies in turbomachinery. This paper presents a simplified stationary geometry optimization strategy to produce enhanced stator-rotor cavity sealing and highlights main driving mechanisms. The stator and rotor rims were designed using a design strategy based on inspiration from the meandering of rivers. A minimum thickness of 2mm was maintained throughout the cavity to ensure a practical implementation. The computational domain comprised of the stator outlet, hub disk leakage cavity, and rotor platform was meshed using NUMECA Int. package, Hexpress. The numerical analysis required 3D Unsteady Reynolds Average Navier-Stokes to replicate vorticial structures using Ansys Fluent. The operating conditions were representative of engine-like conditions, exploring a wide range of massflow ratios from 1 to 3%. The optimization yielded designs that provide 30% reduction in rear platform temperature while minimizing coolant massflow. The applicability of the design was compared against 3D sector in both stationary and in rotation.


Sign in / Sign up

Export Citation Format

Share Document