scholarly journals Investigation of Shale Permeability Evolution considering Bivalued Effective Stress Coefficients for CO2 Injection

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yi Wang ◽  
Hao Wang ◽  
Shangyi Qi ◽  
Shimin Liu ◽  
Yixin Zhao ◽  
...  

Because of the existence of multiscale pores from nano- to macroscale, a multimechanistic shale gas flow process involving the Darcy and Knudsen flows occurs during gas shale well depletion. The respective contribution of the Darcy and Knudsen flows to the permeability is constantly changing with pressure evolution. In this study, laboratory measurements of shale permeability with CO2 injections were carried out under hydrostatic conditions, using the transient pulse-decay method. The “U”-shape permeability curve resulted in both positive and negative effective stress coefficients (Biot’s coefficient) χ . A permeability turning point was thus created to partition permeability curves into the Darcy and Knudsen sections. The Knudsen effect was proven to be significant at low pressure/late time in the laboratory. Effective stress and sorption-induced deformation have been found to govern the Darcy permeability evolution under the tested experimental conditions. Thus, negative effective stress coefficients, together with the positive ones, should be applied to a nonmonotonic pressure-permeability evolution to explain the concurrent effect of the Darcy flow and Knudsen flow at different pore pressures.

2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Yufei Chen ◽  
Changbao Jiang ◽  
Guangzhi Yin ◽  
Andrew K. Wojtanowicz ◽  
Dongming Zhang

Abstract Shale gas well deliverability and economics depend on extremely low permeability that is not only dependent on the rock bedding trend but also controlled by in situ stresses. The purpose of this study was to determine relative contributions of normal and tangential stresses with respect to the rock bedding plane on permeability evolution of shale. The study involved an analysis of the rock bedding structure, followed by triaxial testing of rock samples and theoretical modeling. Also simulated were the effects of stress-bedding and load cycling. The results showed shale permeability reduction during the stress loading process and its gradual recovery during the unloading process. Permeability change was more pronounced in response to normal stress but some effects of the tangential stresses were also observed. Moreover, a theoretical model was derived to describe permeability change with effective stress in the presence of normal and tangential stresses. The model was empirically matched with the experimental results. The assessment of relative contributions of normal and tangential stresses was quantified with the analysis of variance (ANOVA). The analysis revealed significance levels of normal stress, and two tangential stresses σt1 and σt2 on shale permeability as 81%, 5%, and 14%, respectively. An almost 20-percent contribution of tangential stress loading to permeability response indicates a need for the improvement in computing effective stress. Therefore, a new method was suggested to determine effective stress when predicting permeability evolution of shale.


2021 ◽  
Vol 8 (12) ◽  
Author(s):  
Menglai Wang ◽  
Dongming Zhang

A sound understanding of the water permeability evolution in fractured shale is essential to the optimal hydraulic fracturing (reservoir stimulation) strategies. We have measured the water permeability of six fractured shale samples from Qiongzhusi Formation in southwest China at various pressure and stress conditions. Results showed that the average uniaxial compressive strength (UCS) and average tensile strength of the Qiongzhusi shale samples were 106.3 and 10.131 MPa, respectively. The nanometre-sized (tiny) pore structure is the dominant characteristic of the Qiongzhusi shale. Following this, we proposed a pre-stressing strategy for creating fractures in shale for permeability measurement and its validity was evaluated by CT scanning. Shale water permeability increased with pressure differential. While shale water permeability declined with increasing effective stress, such effect dropped significantly as the effective stress continues to increase. Interestingly, shale permeability increased with pressure when the pressure is relatively low (less than 4 MPa), which is inconsistent with the classic Darcy's theory. This is caused by the Bingham flow that often occurs in tiny pores. Most importantly, the proposed permeability model would fully capture the experimental data with reasonable accuracy in a wide range of stresses.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2800 ◽  
Author(s):  
Xingxing Liu ◽  
Jinchang Sheng ◽  
Jishan Liu ◽  
Yunjin Hu

The evolution of coal permeability is vitally important for the effective extraction of coal seam gas. A broad variety of permeability models have been developed under the assumption of local equilibrium, i.e., that the fracture pressure is in equilibrium with the matrix pressure. These models have so far failed to explain observations of coal permeability evolution that are available. This study explores the evolution of coal permeability as a non-equilibrium process. A displacement-based model is developed to define the evolution of permeability as a function of fracture aperture. Permeability evolution is tracked for the full spectrum of response from an initial apparent-equilibrium to an ultimate and final equilibrium. This approach is applied to explain why coal permeability changes even under a constant global effective stress, as reported in the literature. Model results clearly demonstrate that coal permeability changes even if conditions of constant effective stress are maintained for the fracture system during the non-equilibrium period, and that the duration of the transient period, from initial apparent-equilibrium to final equilibrium is primarily determined by both the fracture pressure and gas transport in the coal matrix. Based on these findings, it is concluded that the current assumption of local equilibrium in measurements of coal permeability may not be valid.


2021 ◽  
Vol 25 (6 Part B) ◽  
pp. 4651-4658
Author(s):  
Teng Teng ◽  
Xiaoyan Zhu ◽  
Yu-Ming Wang ◽  
Chao-Yang Ren

Gas-flow in coal or rock is hypersensitive to the changes of temperature, confin?ing pressure and gas pressure. This paper implemented a series of experiments to observe the seepage behavior, especially the permeability evolution of CO2 in naturally fractured coal sample under coupled hydro-thermal-mechanical conditions. The experimental results show that coal permeability increases exponentially with the increasing gas pressure, and tends to be linear when the confining pressure is high. Coal permeability decreases exponentially with the increasing confining pressure. Coal permeability decreases with the increasing temperature generally, but it may bounce up when the temperature rises to high. The results provide reference for the projects of coal gas extraction and carbon dioxide geological sequestration.


Author(s):  
Samsudi Sakrani ◽  
Imam Sumpono ◽  
Nurul Aini Tarjudin ◽  
Zulkafli Othaman

Nanocrystalline silicon (nc-Si) nanodots have been grown on corning glass (7059) substrate using a self-assembly VHF-PECVD method under the following experimental conditions: Fixed deposition temperatures of 300/400 °C, deposition times 30/60 s, plasma power of 10 W, silane gas flow rate of 10 sccm, as well as deposition pressure of 10-2 torr. It is predicted that the onset of nucleation began immediately after the deposition and start to appear clearly after 20-60 s during which growth mechanisms occur. Essentially, the nanodots were formed onto the substrate in dome-like shapes by virtue of equilibrium surface energies, γLS, γLN andγNS. The associated liquid/solid nucleation mechanism was then simulated and related parameters were obtained: Free energy change per unit volume ΔGv ∼-104 Jmol-1; Surface energies per unit area, γLN = 1.44 Jm-2, γNS = 19 - 60 Jm-2 and γLS = 0.74 Jm-2; Critical energies ΔG* ∼10-15 J; Critical radii r* = 16 - 48 nm. These results were experimentally verified, in particular for selected critical radius r* less than 50 nm.Other measurements were also carried out: PL analysis gave bandgap energies ∼ 1.8-2.4 eV, whilst Raman spectra revealed the coexistence of nc-Si and amorphous Si. It is strongly suggested that, the nc-Si nanodot grown on glass substrate fulfills the Volmer-Weber growth mode with a minor modification.


1981 ◽  
Vol 48 (4) ◽  
pp. 757-762 ◽  
Author(s):  
R. H. Nilson

A one-dimensional gas-flow drives a wedge-shaped fracture into a linearly elastic, impermeable half space which is in uniform compression, σ∞, at infinity. Under a constant driving pressure, p0, the fracture/flow system accelerates through a sequence of three self-similar asymptotic regimes (laminar, turbulent, inviscid) in which the fracture grows like an elementary function of time (exponential, near-unity power, and linear, respectively). In each regime, the transport equations are reducible under a separation-of-variables transformation. The integro-differential equations which describe the viscous flows are solved by iterative shooting methods, using expansion techniques to accomodate a zero-pressure singularity at the leading edge of the flow. These numerical results are complemented by an asymptotic analysis for large pressure ratio (N = p0/σ∞ → ∞) which exploits the disparity between the fracture length and penetration length of the flow. Since the seepage losses to a surrounding porous medium are shown to be negligable in the late-time long-fracture limit, the results have application to geologic problems such as: containment evaluation of underground nuclear tests, stimulation of oil and gas wells, and permeability enhancement prior to in situ combustion processes.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3559 ◽  
Author(s):  
Jia ◽  
Tsau ◽  
Barati ◽  
Zhang

There exits a great challenge to evaluate the flow properties of tight porous media even at the core scale. A pulse-decay experiment is routinely used to measure the petrophysical properties of tight cores including permeability and porosity. In this study, 5 sets of pulse-decay experiments are performed on a tight heterogeneous core by flowing nitrogen in the forward and backward directions under different pressures under pore pressures approximately from 100 psi to 300 psi. Permeability values from history matching are from about 300 nD to 600 nD which shows a good linear relationship with the inverse of pore pressure. A preferential flow path is found even when the microcrack is absent. The preferential path causes different porosity values using differential initial upstream and downstream pressure. In addition, the porosity values calculated based on the forward and backward flow directions are also different, and the values are about 1.0% and 2.3%, respectively, which is the primary novelty of this study. The core heterogeneity effect significantly affects the very early stage of pressure responses in both the upstream and downstream but the permeability values are very close in the late-stage experiment. We proposed that that there are two reasons for the preferential flow path: the Joule–Thomson effect for non-ideal gas and the core heterogeneity effect. Based on the finding of this study, we suggest that very early pressure response in a pulse-decay experiment should be closely examined to identify the preferential flow path, and failure to identify the preferential flow path leads to significant porosity and permeability underestimation.


1970 ◽  
Vol 10 (01) ◽  
pp. 51-55 ◽  
Author(s):  
Robert A. Albrecht ◽  
Sullivan S. Marsden

Abstract Although foam usually will flow in porous media, under certain controllable conditions it can also be used to block the flow of gas, both in unconsolidated sand packs and in sandstones. After steady gas or foam flow has been established at a certain injection pressure pi, the pressure is decreased until flow pressure pi, the pressure is decreased until flow ceases at a certain blocking pressure pb. When flow is then reestablished at a second, higher pi, blocking can again occur at another pb that will usually be greater than the first pi. The relationship between pi and Pb depends on the type of porous medium and the foamer solution saturation in the porous medium. A process is suggested whereby porous medium. A process is suggested whereby this phenomenon might be used to impede or block leakage in natural gas storage projects. Introduction The practice of storing natural gas in underground porous rocks has developed rapidly, and it now is porous rocks has developed rapidly, and it now is the major way of meeting peak demands in urban areas of the U. S. Many of these storage projects have been plagued with gas leakage problems that have, in some cases, presented safety hazards and resulted in sizeable economic losses. Usually these leaks are due to such natural factors as faults and fractures, or to such engineering factors as poor cement jobs and wells that were improperly abandoned. For the latter, various remedies such as spot cementing have been tried but not always with great success. In recent years several research groups have been studying the flow properties of aqueous foams and their application to various petroleum engineering problems. Most of this work has been done under problems. Most of this work has been done under experimental conditions such that the foam would flow in either tubes or porous media. However, under some extreme or unusual experimental conditions, flow in porous media becomes very difficult or even impossible. This factor also has suggested m us as well as to others that foam can be used as a gas flow impeder or as a sealant for leaks in gas storage reservoirs. In such a process, the natural ability of porous media to process, the natural ability of porous media to generate foam would be utilized by injecting a slug of foamer solution and following this with gas to form the foam in situ. This paper presents preliminary results of a sandy on the blockage of gas flow by foam in porous media. It also describes how this approach might be applied to a field process for sealing leaks in natural gas storage reservoirs. Throughout this report, we use the term "foam" to describe any dispersed gas-liquid system in which the liquid is the continuous phase, and the gas is the discontinuous phase. APPARATUS AND PROCEDURE A schematic drawing of the apparatus is shown in Fig. 1. At least 50 PV of filtered, deaerated foamer solution were forced through the porous medium to achieve liquid saturation greater than 80 percent. Afterwards air at controlled pressures was passed into the porous medium in order to generate foam in situ. Table 1 shows the properties and dimensions of the several porous media that were used. The beach sands were washed, graded and packed into a vibrating lucite tube containing a constant liquid level to avoid Stoke's law segregation over most of the porous medium. JPT P. 51


2015 ◽  
Vol 69 (5) ◽  
Author(s):  
Melinda Mojzesová ◽  
Mária Mečiarová ◽  
Ambroz Almássy ◽  
Roger Marti ◽  
Radovan Šebesta

AbstractNon-standard experimental conditions can often enhance organocatalytic reactions considerably. The current study explores the effectiveness of a range of non-standard reaction conditions for the asymmetric organocatalytic 1,3-dipolar cycloaddition of a nitrone with α,β-unsaturated aldehydes. The influence of ionic liquids, high-pressure conditions, ultrasound, microwave irradiation and ballmilling was tested as well as the flow process. Because of the low reactivity of the nitrone and unsaturated aldehydes in the 1,3-dipolar cycloaddition, cycloadducts were isolated in only moderate yields from the majority of experiments. However, high diastereo- and enantioselectivities were observed in ionic liquids under solvent-free conditions and in the flow reactor.


Sign in / Sign up

Export Citation Format

Share Document