scholarly journals Convective Cold Pool Associated with Offshore Propagation of Convection System over the East Coast of Southern Sumatra, Indonesia

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Erma Yulihastin ◽  
Ibnu Fathrio ◽  
Trismidianto ◽  
Fadli Nauval ◽  
Elfira Saufina ◽  
...  

The cold pool outflow has been previously shown to be generated by decaying Mesoscale Convective Complexes (MCCs) in the Maritime Continent. The cold pool also has a main role in the development processes of oceanic convective systems inducing heavy rainfall. This study investigated a cold pool event (January 1-2, 2021) related to a heavy rainfall system over the coastal region of Lampung, Southern Sumatra, within a high-resolution model simulation using a regional numerical weather prediction of the Weather Research and Forecasting (WRF) with convection permitting of 1 km spatial resolution, which was validated by satellite and radar data observations. It is important to note that the intensity, duration, timing, and structure of heavy rainfall simulated were in good agreement with satellite-observed rainfall. The results also showed that a cold pool (CP) plays an important role in inducing Mesoscale Convective Complex (MCC) and was responsible for the development of an offshore propagation of land-based convective systems due to the late afternoon rainfall over inland. This study also suggests that the propagation speed of the CP 8.8 m·s−1 occurring over the seaside of the coastal region, the so-called CP-coastal, is a plausible mechanism for the speed of the offshore-propagating convection, which is dependent on both the background prevailing wind and outflow. These conditions help to maintain the near-surface low temperatures and inhibit cold pool dissipation, which has implications for the development of consecutive convection.

2017 ◽  
Vol 145 (6) ◽  
pp. 2177-2200 ◽  
Author(s):  
Russ S. Schumacher ◽  
John M. Peters

Abstract This study investigates the influences of low-level atmospheric water vapor on the precipitation produced by simulated warm-season midlatitude mesoscale convective systems (MCSs). In a series of semi-idealized numerical model experiments using initial conditions gleaned from composite environments from observed cases, small increases in moisture were applied to the model initial conditions over a layer either 600 m or 1 km deep. The precipitation produced by the MCS increased with larger moisture perturbations as expected, but the rainfall changes were disproportionate to the magnitude of the moisture perturbations. The experiment with the largest perturbation had a water vapor mixing ratio increase of approximately 2 g kg−1 over the lowest 1 km, corresponding to a 3.4% increase in vertically integrated water vapor, and the area-integrated MCS precipitation in this experiment increased by nearly 60% over the control. The locations of the heaviest rainfall also changed in response to differences in the strength and depth of the convectively generated cold pool. The MCSs in environments with larger initial moisture perturbations developed stronger cold pools, and the convection remained close to the outflow boundary, whereas the convective line was displaced farther behind the outflow boundary in the control and the simulations with smaller moisture perturbations. The high sensitivity of both the amount and location of MCS rainfall to small changes in low-level moisture demonstrates how small moisture errors in numerical weather prediction models may lead to large errors in their forecasts of MCS placement and behavior.


2013 ◽  
Vol 141 (5) ◽  
pp. 1648-1672 ◽  
Author(s):  
Kelly M. Keene ◽  
Russ S. Schumacher

Abstract The accurate prediction of warm-season convective systems and the heavy rainfall and severe weather associated with them remains a challenge for numerical weather prediction models. This study looks at a circumstance in which quasi-stationary convection forms perpendicular to, and above the cold-pool behind strong bow echoes. The authors refer to this phenomenon as a “bow and arrow” because on radar imagery the two convective lines resemble an archer’s bow and arrow. The “arrow” can produce heavy rainfall and severe weather, extending over hundreds of kilometers. These events are challenging to forecast because they require an accurate forecast of earlier convection and the effects of that convection on the environment. In this study, basic characteristics of 14 events are documented, and observations of 4 events are presented to identify common environmental conditions prior to the development of the back-building convection. Simulations of three cases using the Weather Research and Forecasting Model (WRF) are analyzed in an attempt to understand the mechanisms responsible for initiating and maintaining the convective line. In each case, strong southwesterly flow (inducing warm air advection and gradual isentropic lifting), in addition to directional and speed convergence into the convective arrow appear to contribute to initiation of convection. The linear orientation of the arrow may be associated with a combination of increased wind speeds and horizontal shear in the arrow region. When these ingredients are combined with thermodynamic instability, there appears to be a greater possibility of formation and maintenance of a convective arrow behind a bow echo.


2016 ◽  
Vol 16 (18) ◽  
pp. 12359-12382 ◽  
Author(s):  
Chung-Chieh Wang ◽  
Bing-Kui Chiou ◽  
George Tai-Jen Chen ◽  
Hung-Chi Kuo ◽  
Ching-Hwang Liu

Abstract. During 11–12 June 2012, quasistationary linear mesoscale convective systems (MCSs) developed near northern Taiwan and produced extreme rainfall up to 510 mm and severe flooding in Taipei. In the midst of background forcing of low-level convergence, the back-building (BB) process in these MCSs contributed to the extreme rainfall and thus is investigated using a cloud-resolving model in the case study here. Specifically, as the cold pool mechanism is not responsible for the triggering of new BB cells in this subtropical event during the meiyu season, we seek answers to the question why the location about 15–30 km upstream from the old cell is still often more favorable for new cell initiation than other places in the MCS. With a horizontal grid size of 1.5 km, the linear MCS and the BB process in this case are successfully reproduced, and the latter is found to be influenced more by the thermodynamic and less by dynamic effects based on a detailed analysis of convective-scale pressure perturbations. During initiation in a background with convective instability and near-surface convergence, new cells are associated with positive (negative) buoyancy below (above) due to latent heating (adiabatic cooling), which represents a gradual destabilization. At the beginning, the new development is close to the old convection, which provides stronger warming below and additional cooling at mid-levels from evaporation of condensates in the downdraft at the rear flank, thus yielding a more rapid destabilization. This enhanced upward decrease in buoyancy at low levels eventually creates an upward perturbation pressure gradient force to drive further development along with the positive buoyancy itself. After the new cell has gained sufficient strength, the old cell's rear-flank downdraft also acts to separate the new cell to about 20 km upstream. Therefore, the advantages of the location in the BB process can be explained even without the lifting at the leading edge of the cold outflow.


Abstract Warm-sector heavy rainfall in southern China refers to the heavy rainfall that occurs within a weakly-forced synoptic environment under the influence of monsoonal airflows. It is usually located near the southern coast, and is characterized by poor predictability and a close relationship with coastal terrain. This study investigates the impacts of coastal terrain on the initiation, organization and heavy-rainfall potential of MCSs in warm-sector heavy rainfall over southern China using quasi-idealized WRF simulations and terrain-modification experiments. Typical warm-sector heavy rainfall events were selected to produce composite environments that forced the simulations. MCSs in these events all initiated in the early morning and developed into quasi-linear convective systems along the coast with a prominent backbuilding process. When the small coastal terrain is removed, the maximum 12-h rainfall accumulation decreases by ~46%. The convection initiation is advanced ~2 h with the help of orographic lifting associated with flow interaction with the coastal hills in the control experiment. Moreover, the coastal terrain weakens near-surface winds and thus decreases the deep-layer vertical wind shear component perpendicular to the coast and increases the component parallel to the coast; the coastal terrain also concentrates the moisture and instability over the coastal region by weakening the boundary layer jet. These modifications lead to faster upscale growth of convection and eventually a well-organized MCS. The coastal terrain is beneficial for backbuilding convection and thus persistent rainfall by providing orographic lifting for new cells on the western end of the MCS, and by facilitating a stronger and more stagnant cold pool, which stimulates new cells near its rear edge.


2019 ◽  
Vol 147 (2) ◽  
pp. 733-761 ◽  
Author(s):  
Manda B. Chasteen ◽  
Steven E. Koch ◽  
David B. Parsons

Abstract Nocturnal mesoscale convective systems (MCSs) frequently develop over the Great Plains in the presence of a nocturnal low-level jet (LLJ), which contributes to convective maintenance by providing a source of instability, convergence, and low-level vertical wind shear. Although these nocturnal MCSs often dissipate during the morning, many persist into the following afternoon despite the cessation of the LLJ with the onset of solar heating. The environmental factors enabling the postsunrise persistence of nocturnal convection are currently not well understood. A thorough investigation into the processes supporting the longevity and daytime persistence of an MCS was conducted using routine observations, RAP analyses, and a WRF-ARW simulation. Elevated nocturnal convection developed in response to enhanced frontogenesis, which quickly grew upscale into a severe quasi-linear convective system (QLCS). The western portion of this QLCS reorganized into a bow echo with a pronounced cold pool and ultimately an organized leading-line, trailing-stratiform MCS as it moved into an increasingly unstable environment. Differential advection resulting from the interaction of the nocturnal LLJ with the topography of west Texas established considerable heterogeneity in moisture, CAPE, and CIN, which influenced the structure and evolution of the MCS. An inland-advected moisture plume significantly increased near-surface CAPE during the nighttime over central Texas, while the environment over southeastern Texas abruptly destabilized following the commencement of surface heating and downward moisture transport. The unique topography of the southern plains and the close proximity to the Gulf of Mexico provided an environment conducive to the postsunrise persistence of the organized MCS.


2006 ◽  
Vol 21 (2) ◽  
pp. 125-148 ◽  
Author(s):  
Hyung Woo Kim ◽  
Dong Kyou Lee

Abstract A heavy rainfall event induced by mesoscale convective systems (MCSs) occurred over the middle Korean Peninsula from 25 to 27 July 1996. This heavy rainfall caused a large loss of life and property damage as a result of flash floods and landslides. An observational study was conducted using Weather Surveillance Radar-1988 Doppler (WSR-88D) data from 0930 UTC 26 July to 0303 UTC 27 July 1996. Dominant synoptic features in this case had many similarities to those in previous studies, such as the presence of a quasi-stationary frontal system, a weak upper-level trough, sufficient moisture transportation by a low-level jet from a tropical storm landfall, strong potential and convective instability, and strong vertical wind shear. The thermodynamic characteristics and wind shear presented favorable conditions for a heavy rainfall occurrence. The early convective cells in the MCSs initiated over the coastal area, facilitated by the mesoscale boundaries of the land–sea contrast, rain–no rain regions, saturated–unsaturated soils, and steep horizontal pressure and thermal gradients. Two MCSs passed through the heavy rainfall regions during the investigation period. The first MCS initiated at 1000 UTC 26 July and had the characteristics of a supercell storm with small amounts of precipitation, the appearance of a mesocyclone with tilting storm, a rear-inflow jet at the midlevel of the storm, and fast forward propagation. The second MCS initiated over the upstream area of the first MCS at 1800 UTC 26 July and had the characteristics of a multicell storm, such as a broken areal-type squall line, slow or quasi-stationary backward propagation, heavy rainfall in a concentrated area due to the merging of the convective storms, and a stagnated cluster system. These systems merged and stagnated because their movement was blocked by the Taebaek Mountain Range, and they continued to develop because of the vertical wind shear resulting from a low-level easterly inflow.


2021 ◽  
Author(s):  
Gorm Gruner Jensen ◽  
Romain Fiévet ◽  
Jan O. Haerter

<p>Convective self-aggregation (CSA) is an established modelling paradigm for large-scale thunderstorm clusters, as they form in mesoscale convective systems, the Madden-JulianOscillation or tropical cyclo-genesis [1]. The onset of CSA is characterized by the spontaneous formation of persistently dry patches with suppressed deep convective rainfall. Recently another type of spatio-temporal pattern formation was observed in simulations where the diurnal cycle was mimicked by a sinusoidally varying surface temperature [2]. This diurnal aggregation (DA) is characterized by clusters of intense rain that correlate negatively from one day to the next. </p><p>Here we demonstrate that the diurnal cycle can also act as a trigger of persistently dry patches resembling the early stages of CSA. When the surface temperature is held constant, CSA has been shown to occur within simulations of coarse horizontal model resolution, but not when the resolution was increased [3]. We show that, when a temporally periodic surface temperature forcing is imposed, persistently convection free patches occur even faster when the spatial resolution is increased. The failure to achieve CSA at high horizontal resolution has so far been attributed to the more pronounced cold pool effects at such resolution. In our simulations these cold pools in fact play a key role in promoting CSA. Our results have implications for the origin of persistent convective organization over continents and the sea — and point a path towards achieving such clustering under realistic conditions.</p><p><br>[1]  Christopher S Bretherton, Peter N Blossey, and Marat Khairoutdinov.  An energy-balance analysisof deep convective self-aggregation above uniform SST.Journal of the Atmospheric Sciences, 62(12):4273–4292, 2005.<br>[2]  J. O. Haerter, B. Meyer, and S. B. Nissen.  Diurnal self-aggregation.npj Climate and AtmosphericScience, 3:30, 2020.<br>[3]  Caroline  Muller  and  Sandrine  Bony.   What  favors  convective  aggregation  and  why?GeophysicalResearch Letters, 42(13):5626–5634, 2015.  doi:  https://doi.org/10.1002/2015GL064260.</p>


2020 ◽  
Vol 12 (9) ◽  
pp. 1532
Author(s):  
Seon Ki Park ◽  
Sojung Park

A flood-producing heavy rainfall event occurred at the mountainous coastal region in the northeast of South Korea on 5–6 August 2018, subsequent to extreme heat waves, through a quasi-stationary mesoscale convective system (MCS). We analyzed the storm environment via a multi-data approach using high-resolution (1-km) simulations from the Weather Research and Forecasting (WRF) and in situ/satellite/radar observations. The brightness temperature, from the Advanced Himawari Imager water vapor band, and the composite radar reflectivity were used to identify characteristics of the MCS and associated precipitations. The following factors affected this back-building MCS: low-level convergence by the Korea easterlies (Kor’easterlies), carrying moist air into the coast; strong vertical wind shear, making the updraft tilted and sustained; coastal fronts and back-building convection bands, formed through interactions among the Kor’easterlies, cold pool outflows, and orography; mid-level advection of cold air and positive relative vorticity, enhancing vertical convection and potential instability; and vigorous updraft releasing potential instability. The pre-storm synoptic environment provided favorable conditions for storm development such as high moisture and temperature over the coastal area and adjacent sea, and enhancement of the Kor’easterlies by expansion of a surface high pressure system. Upper-level north-northwesterly winds prompted the MCS to propagate south-southeastward along the coastline.


Climate ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 73
Author(s):  
Modise Wiston ◽  
Kgakgamatso Marvel Mphale

Southern east Africa is prone to some extreme weather events and interannual variability of the hydrological cycle, including tropical cyclones and heavy rainfall events. Most of these events occur during austral summer and are linked to shifts in the intertropical convergence zone, changes in El Niño Southern Oscillation signatures, sea surface temperature and sea level pressure. A typical example include mesoscale convective systems (MCSs) that occur between October and March along the eastern part, adjacent to the warm waters of Mozambique Channel and Agulhas Current. In this study we discuss a heavy rainfall event over southern Africa, focusing particularly on the period 15–20 January 2013, the period during which MCSs were significant over the subcontinent. This event recorded one of the historic rainfalls due to extreme flooding and overflows, loss of lives and destruction of economic and social infrastructure. An active South Indian Convergence Zone was associated with the rainfall event sustained by a low-level trough linked to a Southern Hemisphere planetary wave pattern and an upper-level ridge over land. In addition, also noteworthy is a seemingly strong connection to the strength of the African Easterly Jet stream. Using rainfall data, satellite imagery and re-analysis (model processed data combined with observations) data, our analysis indicates that there was a substantial relation between rainfall totals recorded/observed and the presence of MCSs. The low-level trough and upper-level ridge contributed to moisture convergence, particularly from tropical South East Atlantic Ocean, which in turn contributed to the prolonged life span of the rainfall event. Positive temperature anomalies favored the substantial contribution of moisture fluxes from the Atlantic Ocean. This study provides a contextual assessment of rainfall processes and insight into the physical control mechanisms and feedback of large-scale convective interactions over tropical southern Africa.


2020 ◽  
Vol 148 (2) ◽  
pp. 655-669 ◽  
Author(s):  
Kelly M. Núñez Ocasio ◽  
Jenni L. Evans ◽  
George S. Young

Abstract This study introduces the development of the Tracking Algorithm for Mesoscale Convective Systems (TAMS), an algorithm that allows for the identifying, tracking, classifying, and assigning of rainfall to mesoscale convective systems (MCSs). TAMS combines area-overlapping and projected-cloud-edge tracking techniques to maximize the probability of detecting the progression of a convective system through time, accounting for splits and mergers. The combination of projection on area overlapping is equivalent to setting the background flow in which MCSs are moving on. Sensitivity tests show that area-overlapping technique with no projection (thus, no background flow) underestimates the real propagation speed of MCSs over Africa. The MCS life cycles and propagation derived using TAMS are consistent with climatology. The rainfall assignment is also more reliable than with previous methods as it utilizes a combination of regridding through linear interpolation with high temporal and spatial resolution data. This makes possible the identification of extreme rainfall events associated with intense MCSs more effectively. TAMS will be utilized in future work to build an AEW–MCS dataset to study tropical cyclogenesis.


Sign in / Sign up

Export Citation Format

Share Document