scholarly journals Experiment and Applications of Dynamic Constitutive Model of Tensile and Compression Damage of Sandstones

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Chunliang Dong ◽  
Xiaoyu Lu ◽  
Guangming Zhao ◽  
Xiangrui Meng ◽  
Yingming Li ◽  
...  

A dynamic constitutive model of tensile and compressive damage was constructed on the basis of the ZWT and statistical damage models, particularly by introducing the maximum tension and maximum shear stress criteria to solve the failure problem of the surrounding rock mass caused by deep excavation unloading. A shock compression and splitting test of sandstone specimens under different strain rates were performed by using a split Hopkinson pressure bar (SHPB). The constitutive model was developed again by LS-DYNA for the secondary numerical impact compression and split test of sandstones. Results demonstrated that the constructed dynamic constitutive model of tensile and compressive damage could considerably simulate tensile and compressive stress-strain relations and failure features of sandstones well. Lastly, the constitutive model was applied to conduct a numerical study on damage distribution and failure laws of the surrounding rocks at Gaochou Roadway, Luling Mine under cyclic excavation unloading. Results showed that the unloading failure of surrounding rocks has significant accumulation effects, and the accumulated damage on the floor is larger than those on the roof and roadway walls. The maximum breaking and damage depths are 0.4 m and 5.31 m, respectively. Circumferential damage showed an “umbrella-shaped” distribution pattern. With respect to trend, the damage accumulation effect at the rear part of the excavation face is stronger than that at the front part and the maximum influence distance is 6.4 m. However, the influencing degree of the accumulation effect attenuates gradually as advancing into the excavation face. The reliability of the numerical simulation is verified by combining the test results of the field geological radar on the roadway roof.


Author(s):  
Ericka K. Amborn ◽  
Karim H. Muci-Küchler ◽  
Brandon J. Hinz

Studying the high strain rate behavior of soft tissues and soft tissue surrogates is of interest to improve the understanding of injury mechanisms during blast and impact events. Tests such as the split Hopkinson pressure bar have been successfully used to characterize material behavior at high strain rates under simple loading conditions. However, experiments involving more complex stress states are needed for the validation of constitutive models and numerical simulation techniques for fast transient events. In particular, for the case of ballistic injuries, controlled tests that can better reflect the effects induced by a penetrating projectile are of interest. This paper presents an experiment that tries to achieve that goal. The experimental setup involves a cylindrical test sample made of a translucent soft tissue surrogate that has a small pre-made cylindrical channel along its axis. A small caliber projectile is fired through the pre-made channel at representative speeds using an air rifle. High speed video is used in conjunction with specialized software to generate data for model validation. A Lagrangian Finite Element Method (FEM) model was prepared in ABAQUS/Explicit to simulate the experiments. Different hyperelastic constitutive models were explored to represent the behavior of the soft tissue surrogate and the required material properties were obtained from high strain rate test data reported in the open literature. The simulation results corresponding to each constitutive model considered were qualitatively compared against the experimental data for a single projectile speed. The constitutive model that provided the closest match was then used to perform an additional simulation at a different projectile velocity and quantitative comparisons between numerical and experimental results were made. The comparisons showed that the Marlow hyperelastic model available in ABAQUS/Explicit was able to produce a good representation of the soft tissue surrogate behavior observed experimentally at the two projectile speeds considered.



Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Lei Yan ◽  
Wenhua Yi ◽  
Liansheng Liu ◽  
Jiangchao Liu ◽  
Shenghui Zhang

By utilizing the improved split Hopkinson pressure bar (SHPB) test device, uniaxial, constant-speed cyclic, and variable-speed cyclic impact compression tests were conducted on weakly weathered granite samples. By combining nuclear magnetic resonance (NMR) and triaxial seepage tests, this study investigated the change laws in the mechanical properties, porosity evolution, and permeability coefficients of the samples under cyclic impacts. The results showed that in constant-speed cyclic impacts with increasing impact times, deformation modulus decreased, whilst porosity firstly decreased and then increased. Furthermore, dynamic peak strength firstly increased and then decreased whereas peak strain constantly increased before failure of the samples. In the variable-speed cyclic impacts, as impact times increased, deformation modulus firstly increased and then declined with damage occurring after four impact times. The compaction process weakened and even disappeared with increasing initial porosity. Three types of pores were found in the samples that changed in multiscale under cyclic loading. In general, small pores extended to medium- and large-sized pores. After three variable-speed cyclic impacts, the porosity of the samples was larger than the initial porosity and the permeability coefficient was greater than its initial value. The results demonstrate that the purpose of enhancing permeability and keeping the ore body stable can be achieved by conducting three variable-speed cyclic impacts on the samples.



Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 66 ◽  
Author(s):  
Jingyuan Zhou ◽  
Liangliang Ding ◽  
Wenhui Tang ◽  
Xianwen Ran

Metal/fluoropolymer materials are typical reactive materials. Polytetrafluoroethylene (PTFE)/Al/CuO reactive materials were studied in this research. Scanning electron microscopy (SEM), quasi-static compression, the Split Hopkinson pressure bar test, and the drop hammer test were used to study the mechanical properties and induced reaction characteristics of the reactive materials with different Al/CuO thermite contents and different particle sizes. SEM images of the samples demonstrate that the reactive materials were mixed evenly. The compression test results show that, if the particle size of PTFE was too small, the strength of reactive materials after sintering was reduced. After sintering, with the increase in the content of Al/CuO thermite, the strength of the micro-sized PTFE/Al/CuO firstly increased and then decreased. The Johnson–Cook constitutive model can be used to characterize the reactive materials, and the parameters of the Johnson–Cook constitutive model of No. 3 reactive materials (PTFE/Al:Al/CuO = 3:1) were obtained. The reliability of the parameters was verified by numerical simulation. Drop hammer tests show that the addition of Al/CuO aluminothermic materials or the use of nano-sized PTFE/Al reactive materials can significantly improve the sensitivity of the material. The research in this paper can provide a reference for the preparation, transportation, storage, and application of reactive materials.



Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1561 ◽  
Author(s):  
Kebin Zhang ◽  
Wenbin Li ◽  
Yu Zheng ◽  
Wenjin Yao ◽  
Changfang Zhao

The temperature and strain rate significantly affect the ballistic performance of UHMWPE, but the deformation of UHMWPE under thermo-mechanical coupling has been rarely studied. To investigate the influences of the temperature and the strain rate on the mechanical properties of UHMWPE, a Split Hopkinson Pressure Bar (SHPB) apparatus was used to conduct uniaxial compression experiments on UHMWPE. The stress–strain curves of UHMWPE were obtained at temperatures of 20–100 °C and strain rates of 1300–4300 s−1. Based on the experimental results, the UHMWPE belongs to viscoelastic–plastic material, and a hardening effect occurs once UHMWPE enters the plastic zone. By comparing the stress–strain curves at different temperatures and strain rates, it was found that UHMWPE exhibits strain rate strengthening and temperature softening effects. By modifying the Sherwood–Frost model, a constitutive model was established to describe the dynamic mechanical properties of UHMWPE at different temperatures. The results calculated using the constitutive model were in good agreement with the experimental data. This study provides a reference for the design of UHMWPE as a ballistic-resistant material.



2017 ◽  
Vol 27 (5) ◽  
pp. 686-706 ◽  
Author(s):  
Zhiwu Zhu ◽  
Zhijie Liu ◽  
Qijun Xie ◽  
Yesen Lu ◽  
Dingyun Li

To reveal the influences of soil particle size on the dynamic impact mechanical properties of frozen soil, four groups of frozen soil specimens composed of different particle sizes are tested using a split-Hopkinson pressure bar. Based on the Druger–Prager failure criterion and coupled damage-plasticity, a dynamic micro-constitutive model is established for describing the dynamic mechanical behavior of the frozen soil. Macroscopically, frozen soil is assumed to be homogeneous and continuous, although a large number of micro-cracks and micro-voids are distributed randomly throughout the volume. When a frozen soil specimen is subjected to a substantial shock, the propagation of micro-cracks and the collapse of micro-voids can induce damage. The evolution equations of the two damage mechanisms are proposed. Finally, through a comparison, it was shown that simulation results agreed well with the experimental results, thus validating the suitability of the developed model.



Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yutao Li ◽  
Faning Dang ◽  
Mei Zhou ◽  
Jie Ren

In order to study the compressive deformation and energy evolution characteristics of concrete under dynamic loading, impact compression tests with impact velocities of 5, 6, and 7 m/s were carried out on concrete samples with aggregate volume ratios of 0, 32%, 37%, and 42%, respectively, using a split Hopkinson pressure bar test apparatus. The broken concrete pieces after destruction were collected and arranged. The fractal characteristics of fragmentation distribution of concrete specimens with different aggregate rates under impact were discussed, and the roughness of the fragment surface was characterized by the fractal dimension of the broken fragment and the crack surface energy was calculated. In addition, the analytical equation of the fractal dimension of the broken fragment and the crack surface energy was established. The relationship between the specimen energy absorption and the crack surface energy was compared and analyzed. The results show that the concrete specimens are mainly tensile split failure modes under different impact speeds. The fractal dimension, absorption energy, and crack surface energy all increase with the increase in impact speed and decrease with the increase in the aggregate rate. When the aggregate rate is different, the effective utilization rate of the absorbed energy is the largest when the aggregate content is 37%. The surface energy of the crack can be used to estimate the concrete dynamic intensity.



2018 ◽  
Vol 183 ◽  
pp. 01059
Author(s):  
Philip Church ◽  
Peter Gould ◽  
David Williamson

There is a significant challenge in simulating the behaviour of PBXs under high strain rate impact loading. A Porter-Gould physically based constitutive model has been developed for the DPX2 explosive. A series of quasi-static compression and tensile tests over a range of temperatures were performed together with DMA tests to calibrate the model. In particular tests were performed for different L/D ratios to understand the complex localisation and damage behaviour of the material. High rate tests on the compression Split Hopkinson Pressure Bar (SHPB) for a range of temperatures were then used for validation of the model under idealised stress states. Some model development is still required, particularly at lower temperatures near the glass transition temperature. In addition a series of classical Taylor Tests were used to validate the model under impact loading conditions at room temperature. The DYNA3D simulations gave very good results compared to the experiments for these impact conditions.



Author(s):  
Yihang Fan ◽  
Bing Wang ◽  
Zhaopeng Hao

In this study, the effects of strain rate and temperature on the flow stress of Inconel718 were analyzed by Split Hopkinson Pressure Bar (SHPB) experiment and quasi-static compression experiment. The classical JC constitutive model was established by combining the quasi-static compression experiment with the SHPB experiment. According to the effects of different grain sizes and [Formula: see text] phase on dislocation pile-up, the dislocation pile-up theory was introduced to modify the JC constitutive model. The modified constitutive model was compiled in FORTRAN language, and VUMAT user material subroutine was called and secondary development was carried out to establish the polycrystalline simulation model with different grain sizes. The uniaxial tensile and compression simulation process of polycrystal with different grain sizes was performed. Through comparing the simulation results with the experimental data. The correlation coefficient R, between the simulation and experimental values, is 0.97,981, and the average relative error is only 3.72%. The accuracy of the modified constitutive model was verified.



2007 ◽  
Vol 7-8 ◽  
pp. 251-256 ◽  
Author(s):  
Takashi Yokoyama ◽  
Kenji Nakai

High strain-rate compressive responses of AA7075-T651 and its welds as produced by the friction stir welding (or FSW) process are investigated using the conventional split Hopkinson pressure bar. Cylindrical specimens machined along the thickness direction of the base material (AA7075-T651) and the friction stir (FS) welds are used in the static and impact compression tests. The micro-hardness tests are conducted across the centerline of a FS welded AA707-T651 joint in order to examine the microstructural change. It is shown that FSW reduces the compressive flow stress of the FS weld (weld nugget) to below that of the base material, and both the base material and the FS weld exhibit almost no strain rate effects up to nearly € ε˙ =103/s.



Sign in / Sign up

Export Citation Format

Share Document