scholarly journals Molecular Mechanism for PACAP 38-Induced Neurite Outgrowth in PC12 Cells

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Junko Shibato ◽  
Fumiko Takenoya ◽  
Takahiro Hirabayashi ◽  
Ai Kimura ◽  
Michio Yamashita ◽  
...  

The present research investigates the molecular mechanism of neurite outgrowth (protrusion elongation) under pituitary adenylate cyclase-activating polypeptide (PACAP) 38 treatments using a rat adrenal-derived pheochromocytoma cell line—PC12. This study specifically looks into the regulation of PACAP38-induced collapsing response mediator protein 2 (CRMP2) previously identified in a mouse brain ischemia model and which could be recovered by PACAP38 treatment. Previously, DNA microarray analysis revealed that PACAP 38-mediated neuroprotection involved not only CRMP2 but also pathways related to glycogen synthase kinase-3β (GSK-3β) and other signaling components. Thus, to clarify whether CRMP2 acts directly on PACAP38 or through GSK-3β as part of the mechanism of PACAP38-induced neurite outgrowth, we observed neurite outgrowth in the presence of GSK-3β inhibitors and activators. PC12 cells were treated with PACAP38 being added to the cell culture medium at concentrations of 10−7 M, 10−8 M, and 10−9 M. Post PACAP38 treatment, immunostaining was used to confirm protrusion elongation of the PC12 cells, while RT-PCR, two-dimensional gel electrophoresis in conjunction with Western blotting, and inhibition experiments were performed to confirm the expression of the PACAP gene, its receptors, and downstream signaling components. Our data show that neurite protrusion elongation by PACAP38 (10−7 M) in PC12 cells is mediated through the PAC1-R receptor as demonstrated by its suppression by a specific inhibitor PA-8. Inhibitor experiments suggested that PACAP38-triggered neurite protrusion follows a GSK-3β-regulated pathway, where the AKT and cAMP/ERK pathways are involved and where the inhibition of Rho/Roc could enhance neurite protrusion under PACAP38 stimulation. Although we could not yet confirm the exact role and position of CRMP2 in PACAP38-mediated PC12 cell elongation, it appears that its phosphorylation and dephosphorylation have a correlation with the neurite protrusion elongation through the interplay of CDK5, which needs to be investigated further.

1994 ◽  
Vol 269 (29) ◽  
pp. 18961-18967
Author(s):  
K. Kimura ◽  
S. Hattori ◽  
Y. Kabuyama ◽  
Y. Shizawa ◽  
J. Takayanagi ◽  
...  

1996 ◽  
Vol 109 (2) ◽  
pp. 289-300 ◽  
Author(s):  
T.R. Jackson ◽  
I.J. Blader ◽  
L.P. Hammonds-Odie ◽  
C.R. Burga ◽  
F. Cooke ◽  
...  

Application of nerve growth factor (NGF) to PC12 cells stimulates a programme of physiological changes leading to the development of a sympathetic neuron like phenotype, one aspect of which is the development of a neuronal morphology characterised by the outgrowth of neuritic processes. We have investigated the role of phosphoinositide 3-kinase in NGF-stimulated morphological differentiation through two approaches: firstly, preincubation with wortmannin, a reputedly specific inhibitor of phosphoinositide kinases, completely inhibited initial morphological responses to NGF, the formation of actin filament rich microspikes and subsequent neurite outgrowth. This correlated with wortmannin inhibition of NGF-stimulated phosphatidylinositol(3,4,5)trisphosphate (PtdInsP3) and phosphatidylinositol(3,4)bisphosphate (PtdIns(3,4)P2) production and with inhibition of NGF-stimulated phosphoinositide 3-kinase activity in anti-phosphotyrosine immunoprecipitates. Secondly, the overexpression of a mutant p85 regulatory subunit of the phosphoinositide 3-kinase, which cannot interact with the catalytic p110 subunit, also substantially inhibited the initiation of NGF-stimulated neurite outgrowth. In addition, we found that wortmannin caused a rapid collapse of more mature neurites formed following several days exposure of PC12 cells to NGF. These results indicate that NGF-stimulated neurite outgrowth requires the activity of a tyrosine kinase regulated PI3-kinase and suggest that the primary product of this enzyme, PtdInsP3, is a necessary second messenger for the cytoskeletal and membrane reorganization events which occur during neuronal differentiation.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5391
Author(s):  
Zheng Liu ◽  
Ming Bian ◽  
Qian-Qian Ma ◽  
Zhuo Zhang ◽  
Huan-Huan Du ◽  
...  

A series of novel synthetic substituted benzo[d]oxazole-based derivatives (5a–5v) exerted neuroprotective effects on β-amyloid (Aβ)-induced PC12 cells as a potential approach for the treatment of Alzheimer’s disease (AD). In vitro studies show that most of the synthesized compounds were potent in reducing the neurotoxicity of Aβ25-35-induced PC12 cells at 5 μg/mL. We found that compound 5c was non-neurotoxic at 30 μg/mL and significantly increased the viability of Aβ25-35-induced PC12 cells at 1.25, 2.5 and 5 μg/mL. Western blot analysis showed that compound 5c promoted the phosphorylation of Akt and glycogen synthase kinase (GSK-3β) and decreased the expression of nuclear factor-κB (NF-κB) in Aβ25-35-induced PC12 cells. In addition, our findings demonstrated that compound 5c protected PC12 cells from Aβ25-35-induced apoptosis and reduced the hyperphosphorylation of tau protein, and decreased the expression of receptor for AGE (RAGE), β-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1), inducible nitric oxide synthase (iNOS) and Bcl-2-associated X protein/B-cell lymphoma 2 (Bax/Bcl-2) via Akt/GSK-3β/NF-κB signaling pathway. In vivo studies suggest that compound 5c shows less toxicity than donepezil in the heart and nervous system of zebrafish.


2021 ◽  
Author(s):  
César García-Cruz ◽  
Candelaria Merino-Jiménez ◽  
Jorge Aragón ◽  
Víctor Ceja ◽  
Brenda González-Assad ◽  
...  

Abstract Dp40 is ubiquitously expressed, including in the central nervous system. Dp40 mRNA and protein are detected in the early stages and postnatal stages of the mouse brain, respectively. In addition to being present in the nucleus, membrane, and cytoplasm, Dp40 is detected in neurites and postsynaptic spines in hippocampal neurons. Although Dp40 is expressed from the same promoter as Dp71, its role in the cognitive impairment present in Duchenne muscular dystrophy patients is still unknown. Here, we studied the effects of overexpression of Dp40 and Dp40L170P (a mutant of Dp40) during the neuronal differentiation process of PC12 Tet-On cells. We found that Dp40 overexpression increased the percentage of PC12 cells with neurites and neurite length, while Dp40L170P overexpression decreased them compared to Dp40 overexpression. Two-dimensional gel electrophoresis analysis carried out in nerve growth factor-differentiated PC12-Dp40L170P cells showed that the protein expression profile was modified compared to that of the control cells (PC12 Tet-On). The proteins with the highest upregulated expression were α-internexin and S100a6, which are involved in cytoskeletal structure. The expression of vesicle-associated membrane proteins increased in differentiated PC12-Dp40 cells, in contrast to PC12-Dp40L170P cells, while neurofilament light-chain was decreased in both differentiated cells. HspB1 was absent in undifferentiated cells and weakly detected in all differentiated cells. These results suggest that the subcellular distribution and expression of Dp40 has an important role in the neurite outgrowth of PC12 cells through the regulation of proteins involved in neurofilaments and exocytosis of synaptic vesicles, functions that might be affected in PC12-Dp40L170P.


2020 ◽  
Vol 319 (4) ◽  
pp. G481-G493 ◽  
Author(s):  
Chethan Sampath ◽  
Shanthi Srinivasan ◽  
Michael L. Freeman ◽  
Pandu R. Gangula

Inhibition of glycogen synthase kinase 3β (GSK-3β) with SB 216763 attenuates delayed gastric emptying through gastric nuclear factor erythroid 2-related factor 2 (Nrf2) -phase II enzymes in high-fat diet-fed female mice. SB 216763 restored impaired gastric PI3K/AKT/ β-catenin/caspase 3 expression. Inhibition of GSK-3β normalized gastric dihydrofolate reductase, neuronal nitric oxide synthase-α expression, dimerization and nitrergic relaxation. SB 216763 normalized both serum estrogen and nitrate levels in female obese/Type 2 diabetes mice. SB 216763 reduced downstream signaling of GSK-3β in enteric neuronal cells in vitro.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 251-251 ◽  
Author(s):  
Loredana Santo ◽  
Sonia Vallet ◽  
Teru Hideshima ◽  
Diana Cirstea ◽  
Samantha Pozzi ◽  
...  

Abstract Cyclin dependent kinases (CDKs) and their cyclin complexes play a crucial role in cell cycle control and transcriptional regulation. In multiple myeloma (MM), the abnormal activation of different CDKs and their cyclin partners, especially CDK4/cyclin D1 and CDK6/Cyclin D2, mediate uncontrolled cell cycle progression. Therefore CDKs represent promising novel therapeutic targets for MM. Additionally the cytokine dependent PI3K/Akt signaling pathway mediates growth, survival, drug resistance, migration and cell cycle regulation in MM. Activated Akt in turn phosphorylates downstream target molecules like glycogen synthase kinase (GSK)-3 β impacting growth and survival. Here we investigated the preclinical activity of a novel small-molecule multi-CDK inhibitor, AT7519 in MM. In vitro kinase assays demonstrated more potent inhibition of CDK 1, 2, 4, 5 and 9 compared to CDK 3, 6, and 7. AT7519 also demonstrated potent inhibitory activity against GSK-3 β. No significant inhibitory effects against other kinases were observed. We next investigated the growth inhibitory effect of AT7519 on MM cell lines. Maximal cytotoxicity was observed in 48 hour culture with IC50 values ranging from 0.5μM (MM.1S, U266) to 4 μM (MM1R). AT7519 was also effective against primary tumor cells from MM patients with no significant cytotoxicity noted in peripheral blood mononuclear cells from healthy volunteers. To delineate the underlying mechanism of cytotoxicity induced by AT7519, cell cycle analysis using PI staining in MM.1S cell line was performed. No significant accumulation of cells in a particular phase of cell cycle was noted; however, AT7519 showed an increased sub-G1 population, indicative of apoptosis, which was confirmed by Annexin V+PI+ staining and associated with caspase-8-9 and -3 cleavage. Importantly, we found that AT7519 markedly inhibited phosphorylation (serine 2 and serine 5 sites) of the carboxyl terminal domain of RNA polymerase II (RNA pol II) within 6 hours of treatment. Non-cell cycle CDKs including CDK9 are responsible for phosphorylation and activation of RNA pol II. Similarly, AT7519 also inhibited phosphorylation of GSK-3β while no significant effects on CDK expression levels were evident at early time points. To investigate whether there was a correlation between inhibition of phosphorylation of GSK-3β and RNA pol II, MM.1S cells were cultured with α-amanitin, a specific inhibitor of RNA pol II. Although phosphorylation of RNA pol II was significantly inhibited, phosphorylation of GSK-3β was not altered by amanitin (10 μM for up to 24 hours). These results suggest that GSK-3β and RNA pol II dephosphorylation at serine 2 and serine 5 may be two independent mechanisms by which AT7519 induces apoptosis in MM cells. Ongoing studies are confirming the role of GSK-3 β in AT7519 induced cytotoxicity of MM cells. Finally, the in vivo efficacy of AT7519 was examined using a xenograft mouse model of human MM. Mice treated with AT7519 demonstrated slower tumor growth compared to the control group without adverse effects. Moreover, AT7519 resulted in a significant prolongation in median overall survival in treated mice (40 days in the treatment group versus 27.5 days in the control cohort, p = 0.0324). In conclusion, these results show significant anti-MM activity of AT7519, and provide the rationale for its clinical evaluation in MM.


2010 ◽  
Vol 298 (2) ◽  
pp. H601-H607 ◽  
Author(s):  
Jinkun Xi ◽  
Wei Tian ◽  
Lei Zhang ◽  
Yulan Jin ◽  
Zhelong Xu

The aim of this study was to test whether morphine prevents the mitochondrial permeability transition pore (mPTP) opening through Zn2+ and glycogen synthase kinase 3β (GSK-3β). Fluorescence dyes including Newport Green Dichlorofluorescein (DCF), 4-amino-5-methylamino-2′,7′-difluorofluorescein (DAF-FM), and tetramethylrhodamine ethyl ester (TMRE) were used to image free Zn2+, nitric oxide (NO), and mitochondrial membrane potential (ΔΨm), respectively. Fluorescence images were obtained with confocal microscopy. Cardiomyocytes treated with morphine for 10 min showed a significant increase in Newport Green DCF fluorescence intensity, an effect that was reversed by the NO synthase inhibitor N G-nitro-l-arginine methyl ester (l-NAME), indicating that morphine mobilizes Zn2+ via NO. Morphine rapidly produced NO. ODQ and NS2028, the inhibitors of guanylyl cyclase, prevented Zn2+ release by morphine, implying that cGMP is involved in the action of morphine. The effect of morphine on Zn2+ release was also abolished by KT5823, a specific inhibitor of protein kinase G (PKG). Morphine prevented oxidant-induced loss of ΔΨm, indicating that morphine can modulate the mPTP opening. The effect of morphine on the mPTP was reversed by KT5823 and the Zn2+ chelator N, N, N′, N′-tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN). The action of morphine on the mPTP was lost in cells transfected with the constitutively active GSK-3β mutant, suggesting that morphine may prevent the mPTP opening by inactivating GSK-3β. In support, morphine significantly enhanced phosphorylation of GSK-3β at Ser9, and this was blocked by TPEN. GSK-3β small interfering RNA prevented the pore opening in the control cardiomyocytes but failed to enhance the effect of morphine on the mPTP opening. In conclusion, morphine mobilizes intracellular Zn2+ through the NO/cGMP/PKG signaling pathway and prevents the mPTP opening by inactivating GSK-3β through Zn2+.


2020 ◽  
Author(s):  
Ya-ping Yu ◽  
Qiang-ping Wang ◽  
Jian-Ying Shen ◽  
Nan-xiang Xiong ◽  
Hua Yu ◽  
...  

AbstractNogo-66, the extracellular domain of Nogo-A, has been identified as the most important myelin-associated neuronal growth inhibitor. Evidence suggested that Nogo-66 exert its neurite inhibition effect via a Nogo-66/Protein kinase B (PKB)/Glycogen synthase kinase-3β (GSK-3β)/tau signaling pathway. Integrin-linked kinase (ILK) is a serine/threonine kinase mediating axon upstream growth of PKB and GSK-3β. However, the contribution of ILK to the Nogo-66-induced inhibition of neurite, is not clear. In this study, we set out to reveal the role of ILK on Nogo-66 signaling in vitro and in vivo. To deteremine this directly, Recombinant adenoviruses were constructed to upregulate or downregulate the expresioon of ILK in Neuro 2a (N2a)and analysis the change of downstream molecule and neurite length. The results showed that Nogo-66 inhibited the phosphorylation of ILK, while ILK regulated the phosphorylation of PKB and GSK-3β, and the expression of tau in Nogo-66-treated N2a cells. ILK overexpression through lentivirus vector transfection reduced the inhibitory effect of neurite outgrowth induced by Nogo-66 in cortical neurons. The Tau expression in the complete spinal cord transection rat model was promoted by the overexpression of ILK. Our findings indicated that ILK is a key signal factor involved in Nogo-66-induced inhibition of neurite outgrowth. The mechanism of Nogo-66 signaling pathway was further explained and a proper target for the promotion of neural regeneration was also provided by this study.


2020 ◽  
Vol 133 (2) ◽  
pp. 383-391 ◽  
Author(s):  
Sha Zhao ◽  
Zhen Liu ◽  
Zihan Yu ◽  
Xinran Wu ◽  
Rui Li ◽  
...  

OBJECTIVEInflammation plays a key role in secondary brain damage following intracerebral hemorrhage (ICH). Glycogen synthase kinase–3β (GSK-3β) plays a strong proinflammatory role in many CNS diseases, including stroke. The present study was undertaken to examine the effects of 6-bromoindirubin-3ʹ-oxime (BIO), a specific inhibitor of GSK-3β, on inflammation in ICH rats.METHODSAn ICH rat model was induced by autologous whole-blood injection into the striatum. First, 10, 20, 40, 60, 80, or 100 μg/kg BIO was applied to ICH animals to determine an optimal dosage for producing sufficient GSK-3β inhibition in rat ipsilateral hippocampus by Western blotting. Second, 40 μg/kg BIO was applied to ICH rats for 1, 3, 7, or 14 days, respectively, to determine a suitable intervention time course of BIO by Western blotting analysis on GSK-3β. Third, Western blotting and enzyme-linked immunosorbent assay were used for quantification of inflammation-related factors upstream or downstream of GSK-3β in rat ipsilateral hippocampus. Then, immunohistochemical staining was applied to detect activated microglia and apoptotic cells in rat ipsilateral hippocampus. Last, neurobehavioral tests were performed to assess the sensorimotor impairments in the ICH rats.RESULTSThe results show that BIO 1) blocked GSK-3βTyr216 phosphorylation/activation, thus stabilizing β-catenin, increasing upstream brain-derived neurotrophic factor and downstream heat shock protein 70 levels, and decreasing the levels of nuclear factor–κB p65 and cyclooxygenase 2; 2) decreased the levels of the proinflammatory cytokines tumor necrosis factor–α and interleukin (IL)–1β and IL-6 and elevated the level of antiinflammatory cytokine IL-10; 3) inhibited microglia activation and cell apoptosis; and 4) improved the sensorimotor deficits of ICH rats.CONCLUSIONSBIO posttreatment inhibited microglia activation, prevented inflammation and hippocampal cell death, and ameliorated functional and morphological outcomes in a rat ICH model through inactivation of GSK-3β.


2007 ◽  
Vol 38 (1) ◽  
pp. 137-146 ◽  
Author(s):  
Lian Liu ◽  
Singareddy Rajareddy ◽  
Pradeep Reddy ◽  
Krishna Jagarlamudi ◽  
Chun Du ◽  
...  

Communication between mammalian oocytes and their surrounding granulosa cells through the Kit–Kit ligand (KL, or stem cell factor, SCF) system has been shown to be crucial for follicular development. Our previous studies (Reddy et al. 2005, Liu et al. 2006) have indicated that the intra-oocyte KL–Kit–PI3 kinase (PI3K)–Akt–Foxo3a cascade may play an important role in follicular activation and early development. In the present study, using in situ hybridization and in vitro culture of growing oocytes from 8-day-old postnatal mice, we have demonstrated that another Akt substrate, glycogen synthase kinase-3 (GSK-3), is expressed in growing oocytes. Also, treatment of cultured mouse oocytes with soluble KL not only leads to increased Akt kinase activity in the oocytes, which can phosphorylate recombinant GSK-3 in vitro, but also leads to phosphorylation of oocyte GSK-3α and GSK-3β, which can result in the inactivation of GSK-3 function in oocytes. In addition, we have shown that the regulation of GSK-3α and GSK-3β in cultured oocytes by soluble KL is accomplished through PI3K, since the PI3K-specific inhibitor LY294002 completely abolished the KL-induced phosphorylation of GSK-3α and GSK-3β. Moreover, blockage of the Kit signaling pathway by a Kit function-blocking antibody, ACK2, resulted in reduced phosphorylation of GSK-3. Taken together, our data suggest that the cascade from granulosa cell-derived KL to Kit–PI3K–Akt–GSK-3 in oocytes may take part in regulation of oocyte growth and early ovarian follicular development.


Sign in / Sign up

Export Citation Format

Share Document