scholarly journals Green Synthesized Silver Nanoparticles as Potent Antifungal Agent against Aspergillus terreus Thom

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Faiza Anum ◽  
Khajista Jabeen ◽  
Sumera Javad ◽  
Sumera Iqbal ◽  
Arifa Tahir ◽  
...  

Medicinal plants are composed of a rich pool of biomolecules and have been increasingly recognized for their antimicrobial properties; however, increasing concerns have been put on the bioavailability features. Thus, this study is aimed at exploring the synthesis and characterization of silver nanoparticles synthesized by Chenopodium album L. leaf extract and assessing the antifungal activity against Aspergillus terreus Thom. Plant extract was prepared in methanol to synthetize silver nanoparticles, which were then characterized by Scanning Electron Microscopy (SEM), UV-Visible spectroscopy, and particle size analysis. UV-Visible analysis indicated maximum absorption at 378 nm, and an average particle size was observed as 25.6 nm. Oval to hexagonal shape was observed by SEM. Antifungal activity of silver nanoparticles (1, 1.5, 2, 2.5, 3, and 3.5%) was addressed against A. terreus biomass. At 3.5%, silver nanoparticles revealed to be highly effective, leading to 92% retardation in fungus growth. In next phase, various organic fractions, viz., chloroform, n-butanol, n-hexane, and ethyl acetate, were obtained from plant methanol extract, and the corresponding silver nanoparticles were prepared. These fractions were also assessed for antifungal activity, and n-hexane fraction led to 64% inhibition in A. terreus biomass. Following gas chromatography-mass spectrometry (GC-MS), 18 compounds were identified, namely, 1,3-cyclopentadiene-5-(1 methylethylidene and o-xylene), ethyl benzene, octadecane, nonane, decane, 2-methylheptane, n-hexadecane, 2-methylheptane, and eicosane, along with carbonyl compounds (4,4-dimethyl-3-hexanone) and phenols, like stearic acid, propionic acid hydrazide, and 2,4-di-T-butylphenol. These findings proved that C. album silver nanoparticles are highly effective against A. terreus.


2015 ◽  
Vol 29 (06n07) ◽  
pp. 1540047 ◽  
Author(s):  
S. U. Ekar ◽  
Y. B. Khollam ◽  
P. M. Koinkar ◽  
S. A. Mirji ◽  
R. S. Mane ◽  
...  

Present study reports the biochemical synthesis of silver nanoparticles ( Ag -NPs) from aqueous medium by using the extract of medicinal mushroom Ganoderma, as a reducing and stabilizing agents. The Ag -NPs are prepared at room temperature by the reduction of Ag+to Ag in aqueous solution of AgNO3. The resultant particles are characterized by using UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM) measurement techniques. The formation of Ag -NPs is confirmed by recording the UV-visible absorption spectra for surface plasmon resonance (SPR) where peak around 427 nm. The prominent changes observed in FTIR spectra supported the reduction of Ag+to Ag . The morphological features of Ag -NPs are evaluated from HRTEM. The spherical Ag -NPs are observed in transmission electron microscopy (TEM) studies. The particle size distribution is found to be nearly uniform with average particle size of 2 nm. The Ag -NPs aged for 15, 30, 60 and 120 days showed no profound effect on the position of SPR peak in UV-visible studies, indicating the protecting/capping ability of medicinal mushroom Ganoderma in the synthesis of Ag -NPs.



2021 ◽  
Author(s):  
C. Nirmala ◽  
M Srid

Abstract Endophyte mediated nanoparticles fabrication was emerging as a new frontier in nanomedicines that produce high biocompatible and functionalized silver nanoparticles. In this study, silver nanoparticles were successfully biosynthesized from the extracellular extract of endophytic bacterium Pantoea anthophila isolated from the stem of Waltheria indica for the first time. The synthesised nanoparticles were characterized by UV-Visible and Fourier Transform Infra-Red spectroscopy. The structural analysis is done by X-ray diffraction and the stability was studied by dynamic light scattering and particle size analyser. The size and shape were observed by Transmission Electron Microscope, Scanning Electron Microscope and Energy Dispersive X-Ray spectrum. Further, the nanoparticles were evaluated for antimicrobial and antioxidant properties. Synthesized nanoparticle showed a strong absorption band in the UV-Visible range at 410 nm. The average particle size was found to be 16.8 nm with spherical shaped, crystalline nature. Good zones of inhibition at various ranges were detected against a broad range of human pathogenic bacteria and fungi. A strong free radical scavenging activity of silver nanoparticles with IC50 values 30.75, 19.47, 34.59, 41.12, 27.24, 28.16, 36.21 µg/ml was obtained that was comparable to the reference. The study suggests that the silver nanoparticles can be biosynthesised from endophytic P. anthophila metabolites with significant therapeutic potential. With proper validation, the biosynthesised silver nanoparticles can be developed as a promising antiviral and anticancer drug candidate.



2021 ◽  
Vol 16 (2) ◽  
pp. 253-259
Author(s):  
Salprima Yudha S ◽  
Aswin Falahudin ◽  
Risky Hadi Wibowo ◽  
John Hendri ◽  
Dennie Oktrin Wicaksono

In this study, we developed an alternative of 4-nitrophenol reduction mediated by silver nanoparticles (AgNPs) which was synthesized using aqueous extract of the Peronema canescens leaf through an eco-friendly approach. The reducing 4-nitrophenol to 4-aminophenol mediated by AgNPS in the presence of sodium borohydride as a hydrogen source proceeded rapidly at room temperature without any additional treatments. The AgNPS synthesis was simple and was carried out under mild conditions. Ultraviolet–visible spectroscopy was performed to examine the properties of the obtained AgNPs, which displayed an absorption peak at 431 nm. A transmission electron microscopy analysis revealed that the AgNPs were spherical in shape and had an average particle size of 19 nm as determined by particle size analysis. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 



2021 ◽  
Vol 9 (3) ◽  
pp. 220-226
Author(s):  
Bishow Regmi ◽  
Tirtha Raj Binadi ◽  
Sarb Narayan Jha ◽  
Rajib Kumar Chaudhary ◽  
Bhoj Raj Poudel ◽  
...  

Silver nanoparticles (AgNPs) have been synthesized by green synthesis using Azadirachta indica leaf extract as both reducing and stabilizing agent. Synthesis of colloidal AgNPs was monitored by UV- visible spectroscopy. The UV- visible spectrum showed a peak at 455 nm corresponding to the plasmon absorbance of the silver nanoparticles. Crystallite structure of silver nanoparticles was studied using X-ray diffraction (XRD) analysis which revealed the face-centered cubic structure (FCC) with average particle size of 8.9 nm, calculated using Debye-Scherrer’s equation. Transmission electron microscopy (TEM) image revealed the agglomeration of small grain with particle size ranging from 2 to 14 nm. FCC crystalline nature was also evident from selected area electron diffraction (SAED) analysis. High purity of as-synthesized AgNPs was analyzed using energy dispersive X-ray (EDX) spectroscopy. Band gap energy was calculated to be 2.7 eV from UV- Visible spectra. 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay was stabilized by AgNPs which reveals its antioxidant efficacy. Well diffusion method showed 7 mm to 12 mm zone of inhibition (ZOI) against Gram-positive and Gram-negative bacteria, respectively confirming the antibacterial potential of AgNPs. Int. J. Appl. Sci. Biotechnol. Vol 9(3): 220-226.



2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Indrawati Patabang ◽  
Syahruddin Kasim ◽  
Paulina Taba

Silver nanoparticles have been synthesized using kluwak leaf extract (Pangium edule Reinw) as bioreductor and antioxidant activity assay. The nanoparticles formed were monitored by observing UV-Vis absorption and characterized by using FTIR, PSA, XRD and SEM instruments. The result of functional group characterization with FTIR show that the functional groups OH, C = O, C-O and CH2 act as Ag+ reducing agent. The size of silver nanoparticles was determined by using Particle Size Analyzer (PSA) and the result show average particle size distribution of 93.2 nm. Morphology of AgNp were observed by Scanning Electron Microscope (SEM) and X-Ray Difraction (XRD) analysis show result of 51,78 nm. The antioxidant activity was shown by in kluwak leaf extract and silver nanoparticles with IC50 values respectively 831,33 ppm dan 1493,09 ppm.



2021 ◽  
Vol 10 ◽  
Author(s):  
Venkata Subbaiah Kotakadi ◽  
Bhulakshmi Kolapalli ◽  
Susmila Aparna Gaddam ◽  
Sai Gopal Divi Venkata Ramana

Background: There is an increasing commercial demand for nanoparticles due to their wide applicability in various areas such as chemistry, catalysis, energy and medicine. Metallic nanoparticles are traditionally synthesized by wet chemical techniques where the chemicals used are quite often toxic and flammable. Objective: In the present study, we described a simple, cost effective and environmentally-friendly technique for green synthesis of silver and iron nanoparticles by using the aqueous extract of leafy vegetable Amaranthus viridis as a reducing agent. Methods: The silver and Iron nanoparticles (Av-AgNPs, Av-IONPs) were characterized by different spectral methods. The surface Plasmon resonance spectrums of Av-AgNPs, Av-IONPs were recorded at 422nm and 261nm. The Scanning electron microscopy (SEM) analysis reveals that the Av-AgNPs, Av-IONPs are roughly spherical in shape. Energy dispersive absorption spectroscopy (EDAX) of biosynthesized Av-AgNPs, Av-IONPs indicates the reduction of silver ions to elemental silver and iron ions to elemental iron. Results: The particle size analysis of Av-AgNPs and Av-IONPs was carried out by Dynamic light scattering (DLS) method the results reveal that both Av-AgNPs and Av-IONPs were polydispered in nature. The average particle size of Av-AgNPs is 55.8 nm with a polydispered index (PI) of 0.297, similarly the average particle size of Av-IONPs is 80.6 nm with an polydispered index (PI) of 0.469. Zeta-potential of Av-AgNPs was detected at -24.6 mV and Av-IONPs were detected at 28.8 mV, the result reveals that they high stability due their high negative charge and positive charge respectively. The dual synthesized Av-AgNPs, Av-IONPs exhibits excellent antioxidant activity by DPPH, H2O2 and NO methods. DPPH was proven to be the best when compared with the other two methods. The biosynthesized Av-AgNPs, Av-IONPs proved to have very good antimicrobial activity against gram +ve and gram –ve bacteria. Conclusion: when compared with standard antibiotic. There were several reports on green synthesis of metal nanoparticles using various plant parts, but here edible leafy vegetable Amaranthus viridis was used for biosynthesis of both Av-AgNPs and Av-IONPs.



2010 ◽  
Vol 5 (3) ◽  
pp. 155892501000500 ◽  
Author(s):  
D.P. Chattopadhyay ◽  
B.H. Patel

This research deals with the synthesis of nanosized copper as colloidal solution and its application to cotton fabric. Copper nano colloids were prepared by chemical reduction of copper salt using sodium borohydride as reducing agent in presence of tri-sodium citrate. The size and size distribution of the particles were examined by particle size analyzer and the morphology of the synthesized particles was examined by SEM and AFM techniques. X-ray fluorescence spectroscopy detected the presence of copper in the treated fabric. The results of particle size analysis showed that the average particle size varied from 60 nm to 100 nm. The nano copper treated cotton was subjected to soil burial test for the assessment of its resistance towards microbial attack. SEM images of treated fabric indicate copper nano particles are well dispersed on the surface of the specimens. The treatments of nano copper colloidal solution on cotton not only improve its antimicrobial efficiency but also influenced the tensile strength of the fabric sample positively. The treatment was found to enhance the color depth and fastness properties of direct dyed cotton fabric samples.



2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Antonio M. Brito-Silva ◽  
Luiz A. Gómez ◽  
Cid B. de Araújo ◽  
André Galembeck

Poly(vinyl-pyrrolidone) (PVP) stabilized silver nanoparticles with an average particle size ranging from 4.3 to 4.9 nm were synthesized by laser ablation in preformed colloids in methanol, acetone, ethylene glycol, and glycerin. Aqueous colloids obtained using PVP, poly(vinyl-alcohol) (PVA), and sodium citrate as stabilizing agents also lead to a good control over particle size distribution. Silver ions were reduced with sodium borohydride. The smaller average particle size and narrower dispersivity in comparison to previously reported data were ascribed to the relatively small size of the particles formed in the chemical reduction step, laser fluence, and the use of PVP, which was not previously used as the stabilizing agent in “top-down” routes. The surface plasmon resonance band maximum wavelength shifted from 398 nm in methanol to 425 nm in glycerin. This shift must be due to solvent effects since all other variables were the same.



2017 ◽  
Vol 263 ◽  
pp. 165-169
Author(s):  
Silvia Chowdhury ◽  
Faridah Yusof ◽  
Nadzril Sulaiman ◽  
Mohammad Omer Faruck

In this article, we have studied the process of silver nanoparticles (AgNPs) aggregation and to stop aggregation 0.3% Polyvinylpyrrolidone (PVP) was used. Aggregation study carried out via UV-vis spectroscopy and it is reported that the absorption spectrum of spherical silver nanoparticles were found a maximum peak at 420 nm wavelength. Furthermore, Transmission Electron Microscopy (TEM) were used to characterized the size and shape of AgNPs, where the average particle size is around 10 to 25 nm in diameter and the AgNPs shape is spherical. Next, Dynamic Light Scattering (DLS) were used, owing to observed size distribution and self-correlation of AgNPs.



Author(s):  
SOBITHARANI P ◽  
ANANDAM S ◽  
MOHAN VARMA M ◽  
VIJAYA RATNA J ◽  
SHAILAJA P

Objective: The main objective of this study was to investigate the release pattern of a poorly water-soluble drug quercetin (QU) by fabricating its cyclodextrin nanosponges. Methods: Characterization of the original QU powder and QU-loaded nanosponges was carried out by the Fourier-transformed infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and dissolution tester. The drug release pattern was subjected to various kinetic models. Results: FTIR studies confirmed the formation of inclusion complex of drug. The particle size analysis revealed that the average particle size measured by laser light scattering method is around 400–420 nm with low polydispersity index. The particle size distribution is unimodal and having a narrow range. A sufficiently high zeta potential indicates that the complexes would be stable and the tendency to agglomerate would be miniscule. TEM image revealed the porous nature of nanosponges. The dissolution of the QU nanosponges was significantly higher compared with the pure drug. Conclusion: From the kinetic study, it is apparent that the regression coefficient value closer to unity in case of Korsmeyer-Peppas model indicates that the drug release exponentially to the elapsed time. n value obtained from the Korsmeyer-Peppas plots, i.e., 0.9911 indicating non-Fickian (anomalous) transport ; thus, it projected that delivered its active ingredient by coupled diffusion and erosion.



Sign in / Sign up

Export Citation Format

Share Document