scholarly journals RAEF: An Imputation Framework Based on a Gated Regulator Autoencoder for Incomplete IIoT Time-Series Data

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jianyong Zhao ◽  
Jiachen Qiu ◽  
Danfeng Sun ◽  
Baiping Chen

The number of intelligent applications available for IIoT environments is growing, but when the time-series data these applications rely on are incomplete, their performance suffers. Unfortunately, incomplete data are all too frequent to a phenomenon in the world of IIoT. A common workaround is to use imputation. However, the current methods are largely designed to reconstruct a single missing pattern, where a robust and flexible imputation framework would be able to handle many different missing patterns. Hence, the framework presented in this study, RAEF, is capable of processing multiple missing patterns. Based on a recurrent autoencoder, RAEF houses a novel neuron structure, called a gated regulator, which reduces the negative impact of different missing patterns. In a comparison of the state-of-the-art time-series imputation frameworks at a range of different missing rates, RAEF yielded fewer errors than all its counterparts.

2021 ◽  
Vol 3 (2) ◽  
pp. 69
Author(s):  
Rohim Rohim ◽  
Mike Triani

The purpose of this research is to determine (1) the effect of income on gas consumption in Indonesia (2) the effect of population on gas consumption in Indonesia (3) the effect of industrial growth on gas consumption in Indonesia. This type of research is descriptive and associative. The data used in this research is secondary data from Indonesia in the form of time series data from 1970 to 2019 and this data was obtained from official institutions of the World Bank and BP Statistic World. The data were processed using multiple linear regression. The results showed that the income had a negative and significant effect on gas consumption with a probability value of 0.0005 <0.05, the population had a positive and significant effect on gas consumption with a value of prob t-count of 0.0010 <0.05 and industrial growth had a positive and significant effect on gas consumption.  The significant to gas consumption in Indonesia with a value of prob t-count value of 0.5219 <0.05 and suggestions for further researchers to be able to analyze other factors that affecting gas consumption in Indonesia.  Because from the gas sectors, there are still many factors that affected gas consumption until the research results will be better


Author(s):  
Elangovan Ramanujam ◽  
S. Padmavathi

Innovations and applicability of time series data mining techniques have significantly increased the researchers' interest in the problem of time series classification. Several algorithms have been proposed for this purpose categorized under shapelet, interval, motif, and whole series-based techniques. Among this, the bag-of-words technique, an extensive application of the text mining approach, performs well due to its simplicity and effectiveness. To extend the efficiency of the bag-of-words technique, this paper proposes a discriminate supervised weighted scheme to identify the characteristic and representative pattern of a class for efficient classification. This paper uses a modified weighted matrix that discriminates the representative and non-representative pattern which enables the interpretability in classification. Experimentation has been carried out to compare the performance of the proposed technique with state-of-the-art techniques in terms of accuracy and statistical significance.


1994 ◽  
Vol 19 (2) ◽  
pp. 13-20
Author(s):  
G S Gupta ◽  
H Keshava

This article by G S Gupta and H Keshava estimates the export and import functions for India both at the aggregate (rest of the world) as well as the important individual country levels using annual time series data for the period 1960-61 through 1990-91.


2014 ◽  
Vol 2014 ◽  
pp. 1-19 ◽  
Author(s):  
Seyedjamal Zolhavarieh ◽  
Saeed Aghabozorgi ◽  
Ying Wah Teh

Clustering of subsequence time series remains an open issue in time series clustering. Subsequence time series clustering is used in different fields, such as e-commerce, outlier detection, speech recognition, biological systems, DNA recognition, and text mining. One of the useful fields in the domain of subsequence time series clustering is pattern recognition. To improve this field, a sequence of time series data is used. This paper reviews some definitions and backgrounds related to subsequence time series clustering. The categorization of the literature reviews is divided into three groups: preproof, interproof, and postproof period. Moreover, various state-of-the-art approaches in performing subsequence time series clustering are discussed under each of the following categories. The strengths and weaknesses of the employed methods are evaluated as potential issues for future studies.


2021 ◽  
Author(s):  
◽  
Ali Alqahtani

The use of deep learning has grown increasingly in recent years, thereby becoming a much-discussed topic across a diverse range of fields, especially in computer vision, text mining, and speech recognition. Deep learning methods have proven to be robust in representation learning and attained extraordinary achievement. Their success is primarily due to the ability of deep learning to discover and automatically learn feature representations by mapping input data into abstract and composite representations in a latent space. Deep learning’s ability to deal with high-level representations from data has inspired us to make use of learned representations, aiming to enhance unsupervised clustering and evaluate the characteristic strength of internal representations to compress and accelerate deep neural networks.Traditional clustering algorithms attain a limited performance as the dimensionality in-creases. Therefore, the ability to extract high-level representations provides beneficial components that can support such clustering algorithms. In this work, we first present DeepCluster, a clustering approach embedded in a deep convolutional auto-encoder. We introduce two clustering methods, namely DCAE-Kmeans and DCAE-GMM. The DeepCluster allows for data points to be grouped into their identical cluster, in the latent space, in a joint-cost function by simultaneously optimizing the clustering objective and the DCAE objective, producing stable representations, which is appropriate for the clustering process. Both qualitative and quantitative evaluations of proposed methods are reported, showing the efficiency of deep clustering on several public datasets in comparison to the previous state-of-the-art methods.Following this, we propose a new version of the DeepCluster model to include varying degrees of discriminative power. This introduces a mechanism which enables the imposition of regularization techniques and the involvement of a supervision component. The key idea of our approach is to distinguish the discriminatory power of numerous structures when searching for a compact structure to form robust clusters. The effectiveness of injecting various levels of discriminatory powers into the learning process is investigated alongside the exploration and analytical study of the discriminatory power obtained through the use of two discriminative attributes: data-driven discriminative attributes with the support of regularization techniques, and supervision discriminative attributes with the support of the supervision component. An evaluation is provided on four different datasets.The use of neural networks in various applications is accompanied by a dramatic increase in computational costs and memory requirements. Making use of the characteristic strength of learned representations, we propose an iterative pruning method that simultaneously identifies the critical neurons and prunes the model during training without involving any pre-training or fine-tuning procedures. We introduce a majority voting technique to compare the activation values among neurons and assign a voting score to evaluate their importance quantitatively. This mechanism effectively reduces model complexity by eliminating the less influential neurons and aims to determine a subset of the whole model that can represent the reference model with much fewer parameters within the training process. Empirically, we demonstrate that our pruning method is robust across various scenarios, including fully-connected networks (FCNs), sparsely-connected networks (SCNs), and Convolutional neural networks (CNNs), using two public datasets.Moreover, we also propose a novel framework to measure the importance of individual hidden units by computing a measure of relevance to identify the most critical filters and prune them to compress and accelerate CNNs. Unlike existing methods, we introduce the use of the activation of feature maps to detect valuable information and the essential semantic parts, with the aim of evaluating the importance of feature maps, inspired by novel neural network interpretability. A majority voting technique based on the degree of alignment between a se-mantic concept and individual hidden unit representations is utilized to evaluate feature maps’ importance quantitatively. We also propose a simple yet effective method to estimate new convolution kernels based on the remaining crucial channels to accomplish effective CNN compression. Experimental results show the effectiveness of our filter selection criteria, which outperforms the state-of-the-art baselines.To conclude, we present a comprehensive, detailed review of time-series data analysis, with emphasis on deep time-series clustering (DTSC), and a founding contribution to the area of applying deep clustering to time-series data by presenting the first case study in the context of movement behavior clustering utilizing the DeepCluster method. The results are promising, showing that the latent space encodes sufficient patterns to facilitate accurate clustering of movement behaviors. Finally, we identify state-of-the-art and present an outlook on this important field of DTSC from five important perspectives.


Cryptography ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 28
Author(s):  
Hossein Sayadi ◽  
Yifeng Gao ◽  
Hosein Mohammadi Makrani ◽  
Jessica Lin ◽  
Paulo Cesar Costa ◽  
...  

According to recent security analysis reports, malicious software (a.k.a. malware) is rising at an alarming rate in numbers, complexity, and harmful purposes to compromise the security of modern computer systems. Recently, malware detection based on low-level hardware features (e.g., Hardware Performance Counters (HPCs) information) has emerged as an effective alternative solution to address the complexity and performance overheads of traditional software-based detection methods. Hardware-assisted Malware Detection (HMD) techniques depend on standard Machine Learning (ML) classifiers to detect signatures of malicious applications by monitoring built-in HPC registers during execution at run-time. Prior HMD methods though effective have limited their study on detecting malicious applications that are spawned as a separate thread during application execution, hence detecting stealthy malware patterns at run-time remains a critical challenge. Stealthy malware refers to harmful cyber attacks in which malicious code is hidden within benign applications and remains undetected by traditional malware detection approaches. In this paper, we first present a comprehensive review of recent advances in hardware-assisted malware detection studies that have used standard ML techniques to detect the malware signatures. Next, to address the challenge of stealthy malware detection at the processor’s hardware level, we propose StealthMiner, a novel specialized time series machine learning-based approach to accurately detect stealthy malware trace at run-time using branch instructions, the most prominent HPC feature. StealthMiner is based on a lightweight time series Fully Convolutional Neural Network (FCN) model that automatically identifies potentially contaminated samples in HPC-based time series data and utilizes them to accurately recognize the trace of stealthy malware. Our analysis demonstrates that using state-of-the-art ML-based malware detection methods is not effective in detecting stealthy malware samples since the captured HPC data not only represents malware but also carries benign applications’ microarchitectural data. The experimental results demonstrate that with the aid of our novel intelligent approach, stealthy malware can be detected at run-time with 94% detection performance on average with only one HPC feature, outperforming the detection performance of state-of-the-art HMD and general time series classification methods by up to 42% and 36%, respectively.


Author(s):  
Abdul Razaque ◽  
Marzhan Abenova ◽  
Munif Alotaibi ◽  
Bandar Alotaibi ◽  
Hamoud Alshammari ◽  
...  

Time series data are significant and are derived from temporal data, which involve real numbers representing values collected regularly over time. Time series have a great impact on many types of data. However, time series have anomalies. We introduce hybrid algorithm named novel matrix profile (NMP) to solve the all-pairs similarity search problem for time series data. The proposed NMP inherits the features from two state-of-the art algorithms: similarity time-series automatic multivariate prediction (STAMP), and short text online microblogging protocol (STOMP). The proposed algorithm caches the output in an easy-to-access fashion for single- and multidimensional data. The proposed NMP algorithm can be used on large data sets and generates approximate solutions of high quality in a reasonable time. The proposed NMP can also handle several data mining tasks. It is implemented on a Python platform. To determine its effectiveness, it is compared with the state-of-the-art matrix profile algorithms i.e., STAMP and STOMP. The results confirm that the proposed NMP provides higher accuracy than the compared algorithms.


2017 ◽  
Vol 28 (14) ◽  
pp. 1941-1956 ◽  
Author(s):  
Mehrisadat Makki Alamdari ◽  
Bijan Samali ◽  
Jianchun Li ◽  
Ye Lu ◽  
Samir Mustapha

We present a time-series-based algorithm to identify structural damage in the structure. The method is in the context of non-model-based approaches; hence, it eliminates the need of any representative numerical model of the structure to be built. The method starts by partitioning the state space into a finite number of subsets which are mutually exclusive and exhaustive and each subset is identified by a distinct symbol. Partitioning is performed based on a maximum entropy approach which takes into account the sparsity and distribution of information in the time series. After constructing the symbol space, the time series data are uniquely transformed from the state space into the constructed symbol space to create the symbol sequences. Symbol sequences are the simplified abstractions of the complex system and describe the evolution of the system. Each symbol sequence is statistically characterized by its entropy which is obtained based on the probability of occurrence of the symbols in the sequence. As a consequence of damage occurrence, the entropy of the symbol sequences changes; this change is implemented to define a damage indicative feature. The method shows promising results using data from two experimental case studies subject to varying excitation. The first specimen is a reinforced concrete jack arch which replicates one of the major structural components of the Sydney Harbor Bridge and the second specimen is a three-story frame structure model which has been tested at Los Alamos National Laboratory. The method not only could successfully identify the presence of damage but also has potential to localize it.


2020 ◽  
Vol 16 (4) ◽  
Author(s):  
Satish Chander ◽  
Vijaya Padmanabha ◽  
Joseph Mani

AbstractCOVID’19 is an emerging disease and the precise epidemiological profile does not exist in the world. Hence, the COVID’19 outbreak is treated as a Public Health Emergency of the International Concern by the World Health Organization (WHO). Hence, an effective and optimal prediction of COVID’19 mechanism, named Jaya Spider Monkey Optimization-based Deep Convolutional long short-term classifier (JayaSMO-based Deep ConvLSTM) is proposed in this research to predict the rate of confirmed, death, and recovered cases from the time series data. The proposed COVID’19 prediction method uses the COVID’19 data, which is the trending domain of research at the current era of fighting the COVID’19 attacks thereby, to reduce the death toll. However, the proposed JayaSMO algorithm is designed by integrating the Spider Monkey Optimization (SMO) with the Jaya algorithm, respectively. The Deep ConvLSTM classifier facilitates to predict the COVID’19 from the time series data based on the fitness function. Besides, the technical indicators, such as Relative Strength Index (RSI), Rate of Change (ROCR), Exponential Moving Average (EMA), Williams %R, Double Exponential Moving Average (DEMA), and Stochastic %K, are extracted effectively for further processing. Thus, the resulted output of the proposed JayaSMO-based Deep ConvLSTM is employed for COVID’19 prediction. Moreover, the developed model obtained the better performance using the metrics, like Mean Square Error (MSE), and Root Mean Square Error (RMSE) by considering confirmed, death, and the recovered cases of COVID’19 for China and Oman. Thus, the proposed JayaSMO-based Deep ConvLSTM showed improved results with a minimal MSE of 1.791, and the minimal RMSE of 1.338 based on confirmed cases in Oman. In addition, the developed model achieved the death cases with the values of 1.609, and 1.268 for MSE and RMSE, whereas the MSE and the RMSE value of 1.945, and 1.394 is achieved by the developed model using recovered cases in China.


2016 ◽  
Vol 17 (1) ◽  
pp. 28-43
Author(s):  
Badikenita Sitepu

Government Budget Analysis in Perspective Democracy Multiparty and CoalitionDemocratic system change in Indonesia resulted in a change of political system and economy of Indonesia. Changes in the political system was also followed by the country’s financial sector reform (or budget) in the process of change towards prosperity residents better. Using time series data from 1982 to 2011, this study found that the coalition is formed to have a positive and significant effect on the level of budget revenues in the state budget approval and the state budget, as well as the approval of the budget at the level of state budget. The Coalition does not have influence on the level of approval signifkan budget on state budget. The number of political parties only aect the level of budget revenues in the state budget approval. The level of tax agreements have a significant impact on the level of state budget approval and the state budget. Revenue budget approval rate has a significant influence on the level of approval of both the state budget expenditures and state budget.Keywords: State Budget; Multiparty System; Coalition; Political Party; Level Tax Agreement AbstrakPerubahan sistem demokrasi di Indonesia berdampak terhadap perubahan sistem politik dan ekonomi Indonesia. Perubahan sistem politik juga diikuti dengan reformasi di bidang keuangan negara (atau anggaran) dalam proses perubahan menuju kemakmuran penduduk yang lebih baik. Dengan menggunakan data time series tahun 1982–2011, penelitian ini menemukan bahwa koalisi yang terbentuk berpengaruh positif dan signifikan terhadap tingkat persetujuan anggaran pendapatan pada APBN dan APBN-P, serta tingkat persetujuan anggaran belanja pada APBN-P. Koalisi tidak berpengaruh signifikan terhadap tingkat persetujuan anggaran belanja pada APBN-P. Jumlah partai politik hanya berpengaruh pada tingkat persetujuan anggaran pendapatan pada APBN. Tingkat persetujuan pajak berpengaruh signifikan terhadap tingkat persetujuan anggaran pada APBN dan APBN-P. Tingkat persetujuan anggaran pendapatan berpengaruh signifikan terhadap tingkat persetujuan anggaran belanja, baik pada APBN maupun APBN-P.


Sign in / Sign up

Export Citation Format

Share Document