scholarly journals Dihydroartemisinin Induces Ferroptosis in HCC by Promoting the Formation of PEBP1/15-LO

2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Ying Su ◽  
Danli Zhao ◽  
Chun Jin ◽  
Zhanghao Li ◽  
Sumin Sun ◽  
...  

Relevant researches have recognized the vital role of inducing ferroptosis in the treatment of tumor. The latest findings indicate that PEBP1/15-LO can play an essential role in the process of cell death. However, its role in regulating ferroptosis in hepatocellular carcinoma (simplified by HCC) remains unclear. The previous research of our team has proved that DHA can induce ferroptosis of hepatic stellate cells. In this study, we found that DHA could also induce ferroptosis in HCC cells. Interestingly, DHA induced ferroptosis by promoting the formation of PEBP1/15-LO and promoting cell membrane lipid peroxidation. In addition, we also found that DHA had no obvious regulatory effect on 15-LO, but it could promote PEBP1 protein expression. Importantly, we discovered the upregulation of PEBP1 induced by DHA was related to the inhibition of its ubiquitination degradation. In vivo experiments have also obtained consistent results that DHA can inhibit tumor growth and affect the expression of ferroptosis markers in tumor tissues, which would be partially offset by interference with PEBP1.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Injoo Hwang ◽  
Eun Ju Lee ◽  
Hyomin Park ◽  
Dodam Moon ◽  
Hyo-Soo Kim

Abstract Background Hepatic stellate cells (HSCs) are activated in response to liver injury with TIF1γ-suppression, leading to liver fibrosis. Here, we examined the mechanism how reduction of TIF1γ in HSCs induces damage on hepatocytes and liver fibrosis. Method Lrat:Cas9-ERT2:sgTif1γ mice were treated Tamoxifen (TMX) or wild-type mice were treated Thioacetamide (TAA). HSCs were isolated from mice liver and analyzed role of Tif1γ. HepG2 were treated retinol with/without siRNA for Stimulated by retinoic acid 6 (STRA6) or Retinoic acid receptor(RAR)-antagonist, and LX2 were treated siTIF1γ and/or siSTRA6. TAA treated mice were used for evaluation of siSTRA6 effect in liver fibrosis. Results When we blocked the Tif1γ in HSCs using Lrat:Cas9-ERT2:sgTif1γ mice, retinol is distributed into hepatocytes. Retinol influx was confirmed using HepG2, and the increased intracellular retinol led to the upregulation of lipogenesis-related-genes and triglyceride. This effect was inhibited by a RAR-antagonist or knock-down of STRA6. In the LX2, TIF1γ-suppression resulted in upregulation of STRA6 and retinol release, which was inhibited by STRA6 knock-down. The role of STRA6-mediated retinol transfer from HSCs to hepatocytes in liver fibrosis was demonstrated by in vivo experiments where blocking of STRA6 reduced fibrosis. Conclusions Retinol from HSCs via STRA6 in response to injury with TIF1γ-reduction is taken up by hepatocytes via STRA6, leading to fat-deposition and damage, and liver fibrosis.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Xia Liao ◽  
Yang Bu ◽  
Fan Chang ◽  
Fengan Jia ◽  
Ge Song ◽  
...  

Abstract Background Hepatic stellate cells (HSCs) have a key role in fibrogenesis and in the filtrates of the hepatocellular carcinoma (HCC) stroma, in which they are remodeled and play a critical role in HCC progression. However, the precise role of HSCs trending, infiltration and paracrine in orchestrating the stroma-derived oxaliplatin-resistance in HCC is still vague. Methods The chemo-resistant models were established to explore the correlation between HSC cells and the condition of chemoresistance. The HCC clinical samples were collected to confirm this phenomenon. Then, the relationship between secretory CCN3 from oxaliplatin-resistant HCC and the infiltration of HSCs in associated HCC microenvironment was evaluated. Finally, the role and mechanism of HSCs remodeling in the orchestration of oxaliplatin-resistant HCC were explored. Results The increased infiltration of HSCs and collagen accumulation were found in the microenvironment of oxaliplatin-resistant HCC. The cDNA profiles of the oxaliplatin-resistant HCC was reanalyzed, and CCN3 was one of the significantly increased genes. In HCC clinical samples, the levels of CCN3 and α-SMA are positively correlated, and high expression of CCN3 and α-SMA are positively associated with malignant phenotype and poor prognosis. Then the enhanced abilities of migration and proliferation of HSCs, and elevation of the cytokines paracrine from HSCs relating to HCC malignancy were proved in vitro and in vivo, and which were related to CCN3-ERK signaling pathway activation. Conclusions HSCs remodeling are positively related to CCN3 paracrine in hepatocellular carcinoma, which orchestrated the stroma-derived resistance to chemotherapy in HCC.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Baocai Liu ◽  
Yinliang Lu ◽  
Tingting Zhang ◽  
Xinyue Yu ◽  
Qian Wang ◽  
...  

Abstract Background CMTM7 is a tumor suppressor that positively regulates EGFR degradation by promoting Rab5 activation, and plays a vital role in tumor progression. Rab5 forms complexes with Beclin1 and VPS34, and acts in the early stage of autophagy. However, the affects of CMTM7 on autophagy and its mechanism are still unclear. Methods The effect of CMTM7 on autophagy induction was confirmed by western blotting, confocal microscopy and transmission electron microscopy. Co-immunoprecipitation was used to analyse the interaction of CMTM7 with autophagy initiation complex and Rab5. The xenograft model in nude mice was used to elucidate the function of CMTM7 in tumorigenicity and autophagy in vivo. Results In this study, we first demonstrated that CMTM7 facilitated the initiation of autophagosome formation, which consequently promoted the subsequent multistage process of autophagic flux, i.e. from autophagosome assembly till autolysosome formation and degradation. Confocal and co-immunoprecipitation showed that CMTM7 interacted with Rab5, VPS34, Beclin1, and ATG14L, but not with ULK1, UVRAG and LC3B. CMTM7 also increased the activity of ATG14L-linked VPS34 complex and its association with Rab5. Both in vitro and in vivo experiments demonstrated that knockdown of CMTM7 enhanced tumor growth by impairing autophagy. Conclusion These findings highlighted the role of CMTM7 in the regulation of autophagy and tumorigenicity, revealing it as a novel molecule that is associated with the interaction of Rab5 and ATG14L-Beclin1-VPS34 complex.


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Chun Jin ◽  
Yujia Li ◽  
Ying Su ◽  
Zijian Guo ◽  
Xiaoyong Wang ◽  
...  

Abstract Related research has recognized the vital role of methionine cycle metabolism in cancers. However, the role and mechanism of methionine cycle metabolism in hepatocellular carcinoma are still unknown. In this study, we found that [Cu(ttpy-tpp)Br2]Br (Referred to as CTB) could induce hepatocellular carcinoma cells senescence, which is a new copper complex synthesized by our research group. Interestingly, CTB induces senescence by inhibiting the methionine cycle metabolism of HCC cells. Furthermore, the inhibitory effect of CTB on the methionine cycle depends on mitochondrial carrier protein SLC25A26, which was also required for CTB-induced HCC cells senescence. Importantly, we found that CTB-induced upregulation of SLC25A26 could cause abnormal methylation of TERT and inhibited TERT expression, which is considered to be an essential cause of cell senescence. The same results were also obtained in vivo, CTB inhibits the growth of subcutaneously implanted tumors in nude mice and promoted the expression of senescence markers in tumor tissues, and interference with SLC25A26 partially offset the antitumor effect of CTB.


2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Dawei Chen ◽  
Zhenguo Zhao ◽  
Lu Chen ◽  
Qinghua Li ◽  
Jixue Zou ◽  
...  

AbstractEmerging evidence has demonstrated that alternative splicing has a vital role in regulating protein function, but how alternative splicing factors can be regulated remains unclear. We showed that the PPM1G, a protein phosphatase, regulated the phosphorylation of SRSF3 in hepatocellular carcinoma (HCC) and contributed to the proliferation, invasion, and metastasis of HCC. PPM1G was highly expressed in HCC tissues compared to adjacent normal tissues, and higher levels of PPM1G were observed in adverse staged HCCs. The higher levels of PPM1G were highly correlated with poor prognosis, which was further validated in the TCGA cohort. The knockdown of PPM1G inhibited the cell growth and invasion of HCC cell lines. Further studies showed that the knockdown of PPM1G inhibited tumor growth in vivo. The mechanistic analysis showed that the PPM1G interacted with proteins related to alternative splicing, including SRSF3. Overexpression of PPM1G promoted the dephosphorylation of SRSF3 and changed the alternative splicing patterns of genes related to the cell cycle, the transcriptional regulation in HCC cells. In addition, we also demonstrated that the promoter of PPM1G was activated by multiple transcription factors and co-activators, including MYC/MAX and EP300, MED1, and ELF1. Our study highlighted the essential role of PPM1G in HCC and shed new light on unveiling the regulation of alternative splicing in malignant transformation.


2021 ◽  
Vol 9 (2) ◽  
pp. e001364
Author(s):  
Yan Zhang ◽  
Hui Yang ◽  
Jun Zhao ◽  
Ping Wan ◽  
Ye Hu ◽  
...  

BackgroundThe activation of tumor-associated macrophages (TAMs) facilitates the progression of gastric cancer (GC). Cell metabolism reprogramming has been shown to play a vital role in the polarization of TAMs. However, the role of methionine metabolism in function of TAMs remains to be explored.MethodsMonocytes/macrophages were isolated from peripheral blood, tumor tissues or normal tissues from healthy donors or patients with GC. The role of methionine metabolism in the activation of TAMs was evaluated with both in vivo analyses and in vitro experiments. Pharmacological inhibition of the methionine cycle and modulation of key metabolic genes was employed, where molecular and biological analyses were performed.ResultsTAMs have increased methionine cycle activity that are mainly attributed to elevated methionine adenosyltransferase II alpha (MAT2A) levels. MAT2A modulates the activation and maintenance of the phenotype of TAMs and mediates the upregulation of RIP1 by increasing the histone H3K4 methylation (H3K4me3) at its promoter regions.ConclusionsOur data cast light on a novel mechanism by which methionine metabolism regulates the anti-inflammatory functions of monocytes in GC. MAT2A might be a potential therapeutic target for cancer cells as well as TAMs in GC.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1330
Author(s):  
Filipe Pinto ◽  
Liliana Santos-Ferreira ◽  
Marta T. Pinto ◽  
Catarina Gomes ◽  
Celso A. Reis

Biglycan (BGN gene), an extracellular proteoglycan, has been described to be associated with cancer aggressiveness. The purpose of this study was to clarify the clinical value of biglycan as a biomarker in multiple independent GC cohorts and determine the in vitro and in vivo role of biglycan in GC malignant features. We found that BGN is commonly over-expressed in all analyzed cohorts, being associated with disease relapse and poor prognosis in patients with advanced stages of disease. In vitro and in vivo experiments demonstrated that biglycan knock-out GC cells display major phenotypic changes with a lower cell survival, migration, and angiogenic potential when compared with biglycan expressing cells. Biglycan KO GC cells present increased levels of PARP1 and caspase-3 cleavage and a decreased expression of mesenchymal markers. Importantly, biglycan deficient GC cells that were supplemented with exogenous biglycan were able to restore biological features, such as survival, clonogenic and migratory capacities. Our in vitro and in vivo findings were validated in human GC samples, where BGN expression was associated with several oncogenic gene signatures that were associated with apoptosis, cell migration, invasion, and angiogenesis. This study provided new insights on biglycan role in GC that should be taken in consideration as a key cellular regulator with major impact in tumor progression and patients’ clinical outcome.


Sign in / Sign up

Export Citation Format

Share Document