scholarly journals Exploring the Food Pairing Hypothesis in Saudi Cuisine Using Genetic Algorithm

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Muna Al-Razgan ◽  
Shahad Tallab ◽  
Taha Alfakih

Computational gastronomy has emerged as one of the recent hot research topics in the field of food science. It is a field that studies food in the era of data. One of the current research topics in this field is the food pairing hypothesis, which states that food with common flavor compounds tastes good when consumed together. The hypothesis has been studied in Western and European gastronomic societies. However, there are no reported studies conducted in Arab counterparts. In this study, we used genetic algorithms (GAs) to validate this hypothesis in Saudi cuisine. We developed a quantitative model and applied it to a dataset consisting of ingredients compounds found in Saudi cuisine recipes. Our research revealed that the pattern of ingredients occurring in Saudi dishes showed positive food pairing results like western cuisine. Moreover, our research directs the light to new dimensions where GA can be applied to explore the field of food science and computational gastronomy.

2012 ◽  
Vol 17 (4) ◽  
pp. 241-244
Author(s):  
Cezary Draus ◽  
Grzegorz Nowak ◽  
Maciej Nowak ◽  
Marcin Tokarski

Abstract The possibility to obtain a desired color of the product and to ensure its repeatability in the production process is highly desired in many industries such as printing, automobile, dyeing, textile, cosmetics or plastics industry. So far, most companies have traditionally used the "manual" method, relying on intuition and experience of a colorist. However, the manual preparation of multiple samples and their correction can be very time consuming and expensive. The computer technology has allowed the development of software to support the process of matching colors. Nowadays, formulation of colors is done with appropriate equipment (colorimeters, spectrophotometers, computers) and dedicated software. Computer-aided formulation is much faster and cheaper than manual formulation, because fewer corrective iterations have to be carried out, to achieve the desired result. Moreover, the colors are analyzed with regard to the metamerism, and the best recipe can be chosen, according to the specific criteria (price, quantity, availability). Optimaization problem of color formulation can be solved in many diferent ways. Authors decided to apply genetic algorithms in this domain.


2018 ◽  
Author(s):  
Steen Lysgaard ◽  
Paul C. Jennings ◽  
Jens Strabo Hummelshøj ◽  
Thomas Bligaard ◽  
Tejs Vegge

A machine learning model is used as a surrogate fitness evaluator in a genetic algorithm (GA) optimization of the atomic distribution of Pt-Au nanoparticles. The machine learning accelerated genetic algorithm (MLaGA) yields a 50-fold reduction of required energy calculations compared to a traditional GA.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 115
Author(s):  
Andriy Chaban ◽  
Marek Lis ◽  
Andrzej Szafraniec ◽  
Radoslaw Jedynak

Genetic algorithms are used to parameter identification of the model of oscillatory processes in complicated motion transmission of electric drives containing long elastic shafts as systems of distributed mechanical parameters. Shaft equations are generated on the basis of a modified Hamilton–Ostrogradski principle, which serves as the foundation to analyse the lumped parameter system and distributed parameter system. They serve to compute basic functions of analytical mechanics of velocity continuum and rotational angles of shaft elements. It is demonstrated that the application of the distributed parameter method to multi-mass rotational systems, that contain long elastic elements and complicated control systems, is not always possible. The genetic algorithm is applied to determine the coefficients of approximation the system of Rotational Transmission with Elastic Shaft by equivalent differential equations. The fitness function is determined as least-square error. The obtained results confirm that application of the genetic algorithms allow one to replace the use of a complicated distributed parameter model of mechanical system by a considerably simpler model, and to eliminate sophisticated calculation procedures and identification of boundary conditions for wave motion equations of long elastic elements.


Author(s):  
Abdullah Türk ◽  
Dursun Saral ◽  
Murat Özkök ◽  
Ercan Köse

Outfitting is a critical stage in the shipbuilding process. Within the outfitting, the construction of pipe systems is a phase that has a significant effect on time and cost. While cutting the pipes required for the pipe systems in shipyards, the cutting process is usually performed randomly. This can result in large amounts of trim losses. In this paper, we present an approach to minimize these losses. With the proposed method it is aimed to base the pipe cutting process on a specific systematic. To solve this problem, Genetic Algorithms (GA), which gives successful results in solving many problems in the literature, have been used. Different types of genetic operators have been used to investigate the search space of the problem well. The results obtained have proven the effectiveness of the proposed approach.


Author(s):  
Roger C. von Doenhoff ◽  
Robert J. Streifel ◽  
Robert J. Marks

Abstract A model of the friction characteristics of carbon brakes is proposed to aid in the understanding of the causes of brake vibration. The model parameters are determined by a genetic algorithm in an attempt to identify differences in friction properties between brake applications during which vibration occurs and those during which there is no vibration. The model computes the brake torque as a function of wheelspeed, brake pressure, and the carbon surface temperature. The surface temperature is computed using a five node temperature model. The genetic algorithm chooses the model parameters to minimize the error between the model output and the torque measured during a dynamometer test. The basics of genetic algorithms and results of the model parameter identification process are presented.


2008 ◽  
Vol 2008 ◽  
pp. 1-6 ◽  
Author(s):  
Tng C. H. John ◽  
Edmond C. Prakash ◽  
Narendra S. Chaudhari

This paper proposes a novel method to generate strategic team AI pathfinding plans for computer games and simulations using probabilistic pathfinding. This method is inspired by genetic algorithms (Russell and Norvig, 2002), in that, a fitness function is used to test the quality of the path plans. The method generates high-quality path plans by eliminating the low-quality ones. The path plans are generated by probabilistic pathfinding, and the elimination is done by a fitness test of the path plans. This path plan generation method has the ability to generate variation or different high-quality paths, which is desired for games to increase replay values. This work is an extension of our earlier work on team AI: probabilistic pathfinding (John et al., 2006). We explore ways to combine probabilistic pathfinding and genetic algorithm to create a new method to generate strategic team AI pathfinding plans.


Author(s):  
V. A. Turchina ◽  
D. O. Tanasienko

One of the main tasks in organizing the educational process in higher education is the drawing up of a schedule of classes. It reflects the weekly student and faculty load. At the same time, when compiling, there are a number of necessary conditions and a number of desirable. The paper considers seven required and four desirable conditions. In this paper, one of the well-known approaches that can be used in drawing up a curriculum is consid-ered. The proposed scheme of the genetic algorithm, the result of which is to obtain an approximate solution to the problem of scheduling with the need to further improve it by other heuristic methods. To solve the problem, an island model of the genetic algorithm was selected and its advantages were considered. In the paper, the author's own structure of the individual, which includes chromosomes in the form of educational groups and genes as a lesson at a certain time, is presented and justified. The author presents his own implementations of the genetic algorithms. During the work, many variants of operators were tested, but they were rejected due to their inefficiency. The biggest problem was to maintain the consistency of information encoded in chromosomes. Also, two post-steps were added: to try to reduce the number of teacher conflict conflicts and to normalize the schedule - to remove windows from the schedule. The fitness function is calculated according to the following principles: if some desired or desired property is present in the individual, then a certain number is deducted from the individual's assessment, if there is a negative property, then a certain number is added to the assessment. Each criterion has its weight, so the size of the fine or rewards may be different. In this work, fines were charged for non-fulfillment of mandatory conditions, and rewards for fulfilling the desired


Author(s):  
Hamidreza Salmani mojaveri

One of the discussed topics in scheduling problems is Dynamic Flexible Job Shop with Parallel Machines (FDJSPM). Surveys show that this problem because of its concave and nonlinear nature usually has several local optimums. Some of the scheduling problems researchers think that genetic algorithms (GA) are appropriate approach to solve optimization problems of this kind. But researches show that one of the disadvantages of classical genetic algorithms is premature convergence and the probability of trap into the local optimum. Considering these facts, in present research, represented a developed genetic algorithm that its controlling parameters change during algorithm implementation and optimization process. This approach decreases the probability of premature convergence and trap into the local optimum. The several experiments were done show that the priority of proposed procedure of solving in field of the quality of obtained solution and convergence speed toward other present procedure.


JOURNAL ASRO ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 1
Author(s):  
Aris Tri Ika R ◽  
Benny Sukandari ◽  
Okol Sri Suharyo ◽  
Ayip Rivai Prabowo

Navy as a marine core in the defense force is responsible for providing security for realizing stability and security of the country.  At any time there was an invasion of other countries past through sea,  TNI AL must be able to break the enemy resistance line through a sea operation to obtain the sea superiority. But this time the endurance of Striking force Unit at only 7-10 days and required replenishment at sea to maximize the presence in the theater of operations to meet a demand of the logistics: HSD, Freshwater, Lubricating Oil, foodstuffs and amonisi. For the optimal replenishment at sea required scheduling model supporting unit to get the minimum time striking force unit was on node rendezvous. Replenishment at sea scheduling model for striking force unit refers to the problems Vehicle routing problem with time windows using Genetic Algorithms. These wheelbase used is roulette for reproduction, crossover, and mutation of genes. Genetic algorithms have obtained optimum results in the shortest route provisioning scenario uses one supporting unit with a total time of 6.89 days. In scenario two supporting unit with minimal time is 4.97 days. In the scenario, the changing of the node replenishment Genetic Algorithm also get optimal time is 4.97 days with two supporting units. Research continued by changing the parameters of the population, the probability of crossover and mutation that can affect the performance of the genetic algorithm to obtain the solution. Keywords: Genetic Algorithm, Model Scheduling, Striking Force unit


This paper aims produce an academic scheduling system using Genetic Algorithm (GA) to solve the academic schedule. Factors to consider in academic scheduling are the lecture to be held, the available room, the lecturers and the time of the lecturer, the suitability of the credits with the time of the lecture, and perhaps also the time of Friday prayers, and so forth. Genetic Algorithms can provide the best solution for some solutions in dealing with scheduling problems. Based on the test results, the resulting system can automate the scheduling of lectures properly. Determination of parameter values in Genetic Algorithm also gives effect in producing the solution of lecture schedule


Sign in / Sign up

Export Citation Format

Share Document