scholarly journals Mechanical Behavior of Silica Fume Concrete Filled with Steel Tubular Composite Column

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Maganti Sandeep Kauthsa Sharma ◽  
S. Umadevi ◽  
Yerra Sai Sampath ◽  
K. Vasugi ◽  
K. J. N. Sai Nitesh ◽  
...  

Recycling or utilization of industrial waste is becoming more popular as people become more environmentally conscious. Silica fume is a by-product of the smelting process in the silicon and ferrosilicon industries. This study examines the mechanical behavior of steel tubular composite column filled with conventional concrete and silica fume concrete experimentally under axial compressive loading. For the study, variability in steel tube thickness and column height with a constant diameter are considered. To explore the influence of silica fume in concrete, microstructural analyses are carried out by SEM, XRD, and FTIR. The experimental results reveal that the use of silica fume as a replacement of cement is feasible; the silica fume concrete-filled steel tubular (SCFST) column has marginal enhancement strength capacity compared to CFST column as thickness increases.

2015 ◽  
Vol 752-753 ◽  
pp. 533-538
Author(s):  
Khaled Alenezi ◽  
Mahmood Md Tahir ◽  
Talal Alhajri ◽  
Mohamad Ragae

Cold-formed steel (CFS) is known as slender or class 4 section due to high ratio of web-to-thickness ratio. The compressive strength of this type of section is usually very low as it tends to fail due to distortion and warping before reaching the actual compressive strength. The aim of this study is to determine the ultimate capacity of build-up lipped CFS assembled with ferrocement jacket where web-stiffener is provided as the proposed composite column (CFFCC) is under axial compression load. Nine specimens of composite columns were prepared and tested. The main parameters varied in the CFFCC columns are column height, cold-formed steel thickness and influence of ferrocement jacket and web-stiffener. There are three different heights of the CFFCC composite column namely 2000mm, 3000mm and 4000mm used in this study. All CFFCC columns were tested under axial load where a thick steel plate is used to evenly distribute the applied load. The results show the effect of providing both the ferrocement jacket to increase the confinement effect and the web stiffener to provide sufficient lateral support to the column web. A significant increase in both the strength and the ductility of the specimens under axial loading has been recorded. The strength capacity of CFFCC has been improved by about 178% greater than that of bare steel column. Also it is found that, axial load capacity of CFS-ferrocement jacket composite columns (CFFCC) were increased with the increase in thickness of CFS. The use of web-stiffener has improved the axial load capacity of the column but not that significant.


2018 ◽  
Vol 4 (11) ◽  
pp. 2606
Author(s):  
Anas Hameed Majeet ◽  
Ahmad Jabar Hussain Alshamary

In view of the great orientation to the steel buildings and the large role played by the columns in carrying and transferring the loads it is necessary to go to strengthen the steel rolled columns to meet the requirements of the architecture that witch is looking for large spacing. In present paper this research the objectives of this research can be summarized as following: prevent local buckling occurs in columns, strengthen the steel columns from the weak axis in a new methodology, to compare buckling loads of single lacing reinforcement versus double lacing reinforcement and obtain a high bearing column steel section with small surface area increase in column strength capacity. Different parameters are taking into account to investigate the behavior and strength of steel and composite columns such as slenderness ratio, and double lacings and presence of longitudinal reinforcement that parallel to the column height. The type of concrete that adopt is self-compact concrete with high compressive strength. The new and alternative method is were used to strengthen the steel rolled columns at low cost by strengthening the weak axis to preventing or minimize buckling of the columns by using high strength concrete self-compacted without main reinforcements with steel section columns reinforced by lacing as single and double so that it work as full composite structural element and there are connections between concrete block and steel column. There are five specimens with the same height of 1450 mm that was classified as the control specimen and the others with different parameters such as lacing configurations, presence of longitudinal dowels and presence of concrete subject to concentric load. All specimens except the control filled with self-compacted high strength concrete. The result showed that as increase in strength in presence of concrete as compared with the control specimen. Control specimen gave strength capacity compared with the others composite specimens; the increased are 50% composite column, 62.50% composite column with single lacing and 75.00% composite column with double lacing respectively. Specimen (CL1CDL2R) increased in strength capacity as compared with the control specimen 87.50% and 7.14% compared with specimen (CL1CDL) because of presence dowels along the specimen height that increase the stiffness of the composite column. Presence of single and double lacing reduced the buckling value because of reduced the effective columns height. Specimen (CC1L1) gave maximum buckling 32.00 mm compared with the others specimens such as CL1C), (CL1CSL), (CL1CDL) and (CL1CDL2R) respectively, there is significant difference in buckling that reduced by 17.19%, 28.13%, 45.31% and 55.63% respectively.


2013 ◽  
Vol 19 (6) ◽  
pp. 787-795 ◽  
Author(s):  
Yufen Zhang ◽  
Junhai Zhao ◽  
Weifeng Yuan

This paper concentrates on the compressive bearing capacity of one composite column of a Concrete-Filled Square Steel Tube (CFSST) reinforced by a circular steel tube inside. Some tests were conducted to consider the compression behaviour of the stub columns under axial compressive loading. Through an elastoplastic limit analysis based on Unified Strength Theory (UST), the ultimate load capacity of the CFSST columns reinforced by inner circular steel tube under axial compression has been derived, which has a good agreement with the experimental results in comparison with other empirical models. So this model is extended to predict the optimal design of the inner tube, namely, Di/ti and Di/B. In addition, another simple model is also proposed to testify the optimal section of this composite column. With the optimal circular steel tubes inside the CFSST column, the composite column can result in significant savings in column size, which ultimately can lead to significant economic savings and higher bearing capacity. The results show that it has a theoretical significance and application value to adopt circular steel tube to strengthen CFSST column.


2015 ◽  
Vol 752-753 ◽  
pp. 528-532
Author(s):  
Anis Saggaff ◽  
Khaled Alenezi ◽  
Mahmood Md Tahir ◽  
Talal Alhajri ◽  
Mohamad Ragae

Cold-formed steel (CFS) is known to be a thin section. Thus it is considered a weak slender steel section which limits the compression capacity of the column. The aim of this study was to determine the ultimate capacity of built-up lipped CFS (assembled with ferrocement jacket) as composite column (CFFCC) under axial compression load. Nine specimens of composite columns were prepared and tested. The main parameters that varied in the CFFCC columns were column height, cold-formed steel thickness, and influence of ferrocement jacket. There were are three different heights of the CFFCC composite column namely 2000mm, 3000mm and 4000mm used in this study. All CFFCC columns were tested under axial load by a thick steel plate. The results indicated that ferrocement jacket provided sufficient lateral support to the column web and significantly increased both the strength and ductility of the specimens under axial loading. The strength capacity of CFFCC improved significantly, about 149% greater than that of bare steel column section. It was also found that the axial load capacity of CFS-ferrocement jacket composite columns (CFFCC) had increased significantly (in the range of 20% to 40%) as thickness of CFS increased.


2021 ◽  
Vol 11 (5) ◽  
pp. 2133
Author(s):  
Laura Landa-Ruiz ◽  
Miguel Angel Baltazar-Zamora ◽  
Juan Bosch ◽  
Jacob Ress ◽  
Griselda Santiago-Hurtado ◽  
...  

This research evaluates the behavior corrosion of galvanized steel (GS) and AISI 1018 carbon steel (CS) embedded in conventional concrete (CC) made with 100% CPC 30R and two binary sustainable concretes (BSC1 and BSC2) made with sugar cane bagasse ash (SCBA) and silica fume (SF), respectively, after 300 days of exposure to 3.5 wt.% MgSO4 solution as aggressive medium. Electrochemical techniques were applied to monitor corrosion potential (Ecorr) according to ASTM C-876-15 and linear polarization resistance (LPR) according to ASTM G59 for determining corrosion current density (icorr). Ecorr and icorr results indicate after more than 300 days of exposure to the sulfate environment (3.5 wt.% MgSO4 solution), that the CS specimens embedded in BSC1 and BSC2 presented greater protection against corrosion in 3.5 wt.% MgSO4 than the specimens embedded in CC. It was also shown that this protection against sulfates is significantly increased when using GS reinforcements. The results indicate a higher resistance to corrosion by exposure to 3.5 wt.% magnesium sulfate two times greater for BSC1 and BSC2 specimens reinforced with GS than the specimens embedding CS. In summary, the combination of binary sustainable concrete with galvanized steel improves durability and lifetime in service, in addition to reducing the environmental impact of the civil engineering structures.


InterConf ◽  
2021 ◽  
pp. 418-426
Author(s):  
Thi Ngoc Quyen Nguyen

The biggest disadvantage of conventional concrete is brittle and hard, in addition, its durability is not high. The low durability of concrete is due to the presence of calcium hydroxide at the intersection of coarse aggregate particles and hard cement powder. The introduction of coconut fiber and polyvinyl alcohol (PVA) fibers into the concrete to improve the durability and flexibility of the concrete. In addition, the article also considers the effects of other additives such as rice husk ash, silica fume to study the performance of the structure as well as its durability when joining concrete mixes to create flexible concrete movable and more flexible than conventional concrete.


2014 ◽  
Vol 11 (4) ◽  
pp. 323-330 ◽  
Author(s):  
S. Arivalagan

The present day world is witnessing the construction of very challenging and difficult civil engineering structures. Self-compacting concrete (SCC) offers several economic and technical benefits; the use of steel fiber extends its possibilities. Steel fiber acts as a bridge to retard their cracks propagation, and improve several characteristics and properties of the concrete. Therefore, an attempt has been made in this investigation to study the Flexural Behaviour of Steel Fiber Reinforced self compacting concrete incorporating silica fume in the structural elements. The self compacting concrete mixtures have a coarse aggregate replacement of 25% and 35% by weight of silica fume. Totally eight mixers are investigated in which cement content, water content, dosage of superplasticers were all constant. Slump flow time and diameter, J-Ring, V-funnel, and L-Box were performed to assess the fresh properties of the concrete. The variable in this study was percentage of volume fraction (1.0, 1.5) of steel fiber. Finally, five beams were to be casted for study, out of which one was made with conventional concrete, one with SCC (25% silica fume) and other were with SCC (25% silica fume + 1% of steel fiber, 25% silica fume + 1.5% of steel fiber) one with SCC (35% silica fume), and other were SCC (35% Silica fume + 1% of steel fiber, 35% Silica fume + 1.5% of steel fiber). Compressive strength, flexural strength of the concrete was determined for hardened concrete for 7 and 28 days. This investigation is also done to determine the increase the compressive strength by addition of silica fume by varying the percentage.


Sign in / Sign up

Export Citation Format

Share Document