scholarly journals Broadband Dual-Polarized Multidipole Antenna for Base Station Applications

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Yuxuan Huang ◽  
Zeqi Zhu ◽  
Shuting Cai ◽  
Xiaoming Xiong ◽  
Yuan Liu

A wideband dual-polarized multidipole antenna for base station applications is proposed. It consists of a pair of large square-shaped loop dipoles and a pair of small rectangle loop dipoles as radiation elements. A pair of small rectangle loop dipoles is fed by T-shaped feed structure which is in the large square-shaped loop dipoles radiating arm so that the antenna generates an additional resonance and obtains a wider bandwidth. The proposed antenna was fabricated and measured, and the results show that the antenna achieves a wide impedance bandwidth of 63.7 % with VSWR<1.5 covering the frequency range from 1.55 to 3 GHz. A high isolation is better than 29 dB within the operating frequency bandwidth. Moreover, an average gain 8 dBi and a stable radiation pattern with 3 dB beamwidth of 69° ± 4° at H-plane are obtained.

2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Marko Sonkki ◽  
Sami Myllymäki ◽  
Jussi Putaala ◽  
Eero Heikkinen ◽  
Tomi Haapala ◽  
...  

The paper presents a novel dual polarized dual fed Vivaldi antenna structure for 1.7–2.7 GHz cellular bands. The radiating element is designed for a base station antenna array with high antenna performance criteria. One radiating element contains two parallel dual fed Vivaldi antennas for one polarization with 65 mm separation. Both Vivaldi antennas for one polarization are excited symmetrically. This means that the amplitudes for both antennas are equal, and the phase difference is zero. The orthogonal polarization is implemented in the same way. The dual polarized dual fed Vivaldi is positioned 15 mm ahead from the reflector to improve directivity. The antenna is designed for -14 dB impedance bandwidth (1.7–2.7 GHz) with better than 25 dB isolation between the antenna ports. The measured total efficiency is better than -0.625 dB (87%) and the antenna presents a flat, approximately 8.5 dB, gain in the direction of boresight over the operating bandwidth whose characteristics promote it among the best antennas in the field. Additionally, the measured cross polarization discrimination (XPD) is between 15 and 30 dB and the 3 dB beamwidth varies between 68° and 75° depending on the studied frequency.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4351
Author(s):  
Alexandru Tatomirescu ◽  
Alina Badescu

This work presents the design for an antenna element that can be used in radio arrays for the monitoring and detecting of radio emissions from cosmic particles’ interactions in the atmosphere. For these applications, the pattern stability over frequency is the primary design goal. The proposed antenna has a high gain over a relative bandwidth of 88%, a beamwidth of 2.13 steradians, a small group delay variation and a very stable radiation pattern across the frequency bandwidth of 110 to 190 MHz. It is dual polarized and has a simple mechanical structure which is easy and inexpensive to manufacture. The measurements show that the ground has insignificant impact on the overall radiation pattern.


2008 ◽  
Vol 2008 ◽  
pp. 1-6 ◽  
Author(s):  
Dawood Seyed Javan ◽  
Mohammad Ali Salari ◽  
Omid Hashemi Ghoochani

A novel design of an ultra-wideband (UWB) slot antenna is presented. This antenna operates as a transmitter and receiver antenna. Effects of the antenna dimensional parameters are studied through experimental and simulation results. Design procedures are developed and verified for different frequency bands. The experimental and simulation results exhibit good impedance bandwidth, radiation pattern, and relatively constant gain over the entire band of frequency. Antenna gain and directivity at boresight and in their maximum states are close to each other and indicate high radiation efficiency. To use the antenna as a linearly polarized antenna, the radiation pattern in E-plane is better thanthat inH-plane.


2021 ◽  
Author(s):  
Biying Han ◽  
Qi Wu ◽  
Chen Yu ◽  
Haiming Wang ◽  
Xiqi Gao ◽  
...  

Very high wind loads represent one of the major problems for the ultralarge-scale 5G base station array at the sub-6 GHz band, where dozens of or hundreds of antennas are used. An ultracompact dual-polarized cross-dipole antenna with an extremely small overall projected area is presented. The array with low wind load is realized by miniaturized cross dipoles and the replacement of the traditional ground plane with a defected ground structure (DGS) and metal mesh reflector. The DGS is utilized to realize size reduction and isolation enhancement. The projected area of the antenna is reduced by 70%. Therefore, each antenna in the array can be independently packaged using a streamlined radome with a low wind load. And the inter-radome spacing is large enough to make holes that are used to further reduce wind load. The antenna prototype is designed, fabricated, and measured for the sub-1 GHz band. The measured results show that the impedance bandwidth is 680-970 MHz, the polarization isolation is higher than 20 dB, and the gain is around 6.5 dBi. It is verified that the proposed ultracompact antenna of high radiation performance is very suitable for an ultralarge-scale array of low wind load in a 5G base station.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6448
Author(s):  
Xiaosheng Fang ◽  
Kangping Shi ◽  
Yuxiang Sun

A broadband differential-fed dual-polarized hollow cylindrical dielectric resonator antenna (DRA) is proposed in this article. It makes use of the HEM111, HEM113, and HEM115 modes of the cylindrical hollow DRA. The proposed DRA is simply fed by two pairs of conducting strips and each pair of strips is provided with the out-of-phase signals. After introducing four disconnected air holes into the DRA, a broadband characteristic is achieved, with little effect on the antenna gain of its higher-order modes. To verify this idea, frosted K9-glass is applied to fabricate the hollow cylindrical DRA. The differential S-parameters, radiation patterns, and antenna gain of the DRA are studied. It is found that the proposed differential-fed dual-polarized DRA is able to provide a broad differential impedance bandwidth of ~68% and a high differential-port isolation better than ~46 dB. Moreover, symmetrical broadside radiation patterns are observed across the whole operating band. The proposed DRA covers the frequency bands including the 5G-n77 (3.4–4.2 GHz), 5G-n79 (4.4–5.0 GHz), WLAN-5.2 GHz (5.15–5.35 GHz), and WLAN-5.8 GHz (5.725–5.825 GHz), which can be used for 5G communications.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Souphanna Vongsack ◽  
Chuwong Phongcharoenpanich ◽  
Sompol Kosulvit ◽  
Kazuhiko Hamamoto ◽  
Toshio Wakabayashi

This research presents a rectangular ring antenna excited by a circular disc monopole (CDM) mounted in front of a square reflector. The proposed antenna is designed to cover a frequency range of 2.300–5.825 GHz and thereby is suitable for WiMAX applications. Multiple parametric studies were carried out using the CST Microwave Studio simulation program. A prototype antenna was fabricated and experimented. The measurements were taken and compared with the simulation results, which indicates good agreement between both results. The prototype antenna produces an impedance bandwidth (|S11|< −10 dB) that covers the WiMAX frequency range and a constant unidirectional radiation pattern (θ=0°and∅=90°). The minimum and maximum gains are 3.7 and 8.7 dBi, respectively. The proposed antenna is of compact size and has good unidirectional radiation performance. Thus, it is very suitable for a multitude of WiMAX applications.


2018 ◽  
Vol 32 (30) ◽  
pp. 1850362
Author(s):  
Lei Han ◽  
Shen Xiao

In this paper, design, fabrication and measurements of a novel single-pole-double-throw three-state RF MEMS switch based on silicon substrate are presented. The RF MEMS switch consists of two UV-shaped beam push–pull thermal actuators which have three states of ON, OFF and Deep-OFF by using current actuation. When the switch is at Deep-OFF state, it can provide a higher isolation. The switch is fabricated by MetalMUMPs process. The measurement results show that, to the proposed single-pole-double-throw RF MEMS switch, when Switch I is at the ON state and Switch II is at the OFF state, the return loss is better than −16 dB, the insertion loss of Port1 and Port2 is less than −0.9 dB and the isolation of Port3 and Port1 is better than −22 dB at the frequency range from 8 GHz to 12 GHz. When Switch I is at the ON state and the actuator of Switch II is pulled back, which is called the Deep-OFF state, the return loss of Port1 is better than −15.5 dB, the insertion loss of Port1 and Port2 is better than −0.8 dB, and the isolation of Port3 and Port1 is better than −23.5 dB can be achieved at the frequency range from 8 GHz to 12 GHz.


Sign in / Sign up

Export Citation Format

Share Document