scholarly journals Ultracompact Dual-Polarized Cross-Dipole Antenna for 5G Base Station Array of Low Wind Load

Author(s):  
Biying Han ◽  
Qi Wu ◽  
Chen Yu ◽  
Haiming Wang ◽  
Xiqi Gao ◽  
...  

Very high wind loads represent one of the major problems for the ultralarge-scale 5G base station array at the sub-6 GHz band, where dozens of or hundreds of antennas are used. An ultracompact dual-polarized cross-dipole antenna with an extremely small overall projected area is presented. The array with low wind load is realized by miniaturized cross dipoles and the replacement of the traditional ground plane with a defected ground structure (DGS) and metal mesh reflector. The DGS is utilized to realize size reduction and isolation enhancement. The projected area of the antenna is reduced by 70%. Therefore, each antenna in the array can be independently packaged using a streamlined radome with a low wind load. And the inter-radome spacing is large enough to make holes that are used to further reduce wind load. The antenna prototype is designed, fabricated, and measured for the sub-1 GHz band. The measured results show that the impedance bandwidth is 680-970 MHz, the polarization isolation is higher than 20 dB, and the gain is around 6.5 dBi. It is verified that the proposed ultracompact antenna of high radiation performance is very suitable for an ultralarge-scale array of low wind load in a 5G base station.

2021 ◽  
Author(s):  
Biying Han ◽  
Qi Wu ◽  
Chen Yu ◽  
Haiming Wang ◽  
Xiqi Gao ◽  
...  

Very high wind loads represent one of the major problems for the ultralarge-scale 5G base station array at the sub-6 GHz band, where dozens of or hundreds of antennas are used. An ultracompact dual-polarized cross-dipole antenna with an extremely small overall projected area is presented. The array with low wind load is realized by miniaturized cross dipoles and the replacement of the traditional ground plane with a defected ground structure (DGS) and metal mesh reflector. The DGS is utilized to realize size reduction and isolation enhancement. The projected area of the antenna is reduced by 70%. Therefore, each antenna in the array can be independently packaged using a streamlined radome with a low wind load. And the inter-radome spacing is large enough to make holes that are used to further reduce wind load. The antenna prototype is designed, fabricated, and measured for the sub-1 GHz band. The measured results show that the impedance bandwidth is 680-970 MHz, the polarization isolation is higher than 20 dB, and the gain is around 6.5 dBi. It is verified that the proposed ultracompact antenna of high radiation performance is very suitable for an ultralarge-scale array of low wind load in a 5G base station.


2020 ◽  
Vol 10 (13) ◽  
pp. 4546
Author(s):  
Tarek S. Mneesy ◽  
Radwa K. Hamad ◽  
Amira I. Zaki ◽  
Wael A. E. Ali

This paper presented the design and implementation of a 60 GHz single element monopole antenna as well as a two-element array made of two 60 GHz monopole antennas. The proposed antenna array was used for 5G applications with radiation characteristics that conformed to the requirements of wireless communication systems. The proposed single element was designed and optimized to work at 60 GHz with a bandwidth of 6.6 GHz (57.2–63.8 GHz) and a maximum gain of 11.6 dB. The design was optimized by double T-shaped structures that were added in the rectangular slots, as well as two external stubs in order to achieve a highly directed radiation pattern. Moreover, ring and circular slots were made in the partial ground plane at an optimized distance as a defected ground structure (DGS) to improve the impedance bandwidth in the desired band. The two-element array was fed by a feed network, thus improving both the impedance bandwidth and gain. The single element and array were fabricated, and the measured and simulated results mimicked each other in both return loss and antenna gain.


Author(s):  
Sonal Gupta ◽  
Shilpee Patil ◽  
Chhaya Dalela ◽  
Binod Kumar Kanaujia

Abstract Design of single-feed circularly polarized (CP) microstrip antenna is proposed in this article. The design employs the concept of E-shape patch with inclined fractal defected ground structure (IFDGS), which can improve the impedance bandwidth, gain, and axial ratio (AR) bandwidth. The excellent enhanced impedance bandwidth, axial ratio bandwidth, and gain are achieved by an inclined E-shaped fractal etched on the ground plane. The parameter studies of the E-shaped IFDGS are given to illustrate the way to obtain CP radiation. The third iterative IFDGS is fabricated on easily available FR4 substrate with a size of 0.494 λ0 × 0.494 λ0 × 0.019 λ0 (λ0 is the wavelength in free space at 3.624 GHz). The measured results verify the simulated results and show good agreement. The proposed antenna shows an impedance bandwidth of 12.7% at a centre frequency of 3.47 GHz and 3-dB AR bandwidth for this band is 2.39% at a centre frequency of 3.626 GHz. The measured peak gain for the proposed antenna is found as 8.1 dBi. The proposed antenna can be suitable for mobile WIMAX operation (IEEE 802.16e-2005 standard), wireless communication in CA-band and FCC.


Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1995
Author(s):  
Ananda Venkatesan Boologam ◽  
Kalimuthu Krishnan ◽  
Sandeep Kumar Palaniswamy ◽  
C. T. Manimegalai ◽  
Sabitha Gauni

This paper presents a compact, bouquet-inspired, four-element MIMO array for super wideband (SWB) applications. The proposed unit element monopole antenna has compact geometry, and it is deployed by the fusion of an elliptical and circular-shaped radiator. The convoluted geometry and semi-elliptical ground plane, along with the narrow rectangular slit defected ground structure, provides a wide impedance bandwidth. The designed unit cell has the dimensions of 32 mm × 20 mm × 0.8 mm, operates from 2.9 to 30 GHz (S11 ≤ −10 dB) and provides a bandwidth dimension ratio (BDR) of 2894. The proposed low-profile diversity array without any decoupling structures consists of four orthogonally placed, uncorrelated antennas with an inter element spacing of 0.05 λ0, occupies an area of 57 mm × 57 mm and provides dual polarization. The performance metrics of the diversity array were validated for frequencies over ultra-wideband, using mutual coupling characteristics, envelope correlation coefficient (ECC) by far-field radiation, diversity gain (DG), total active reflection coefficient (TARC), channel capacity loss (CCL) and cumulative distribution function (CDF) analysis. The measured mutual coupling over the operating band was less than −18 dB, the ECC was less than 0.004 and the TARC was less than −15 dB, and a better CCL of ˂0.28 bits/s/Hz was achieved by the fabricated antenna.


2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Marko Sonkki ◽  
Sami Myllymäki ◽  
Jussi Putaala ◽  
Eero Heikkinen ◽  
Tomi Haapala ◽  
...  

The paper presents a novel dual polarized dual fed Vivaldi antenna structure for 1.7–2.7 GHz cellular bands. The radiating element is designed for a base station antenna array with high antenna performance criteria. One radiating element contains two parallel dual fed Vivaldi antennas for one polarization with 65 mm separation. Both Vivaldi antennas for one polarization are excited symmetrically. This means that the amplitudes for both antennas are equal, and the phase difference is zero. The orthogonal polarization is implemented in the same way. The dual polarized dual fed Vivaldi is positioned 15 mm ahead from the reflector to improve directivity. The antenna is designed for -14 dB impedance bandwidth (1.7–2.7 GHz) with better than 25 dB isolation between the antenna ports. The measured total efficiency is better than -0.625 dB (87%) and the antenna presents a flat, approximately 8.5 dB, gain in the direction of boresight over the operating bandwidth whose characteristics promote it among the best antennas in the field. Additionally, the measured cross polarization discrimination (XPD) is between 15 and 30 dB and the 3 dB beamwidth varies between 68° and 75° depending on the studied frequency.


2021 ◽  
Author(s):  
Lixia Yang ◽  
Hafiz Usman Tahseen ◽  
Syed Shah Irfan Hussain ◽  
Wang Hongjin

Abstract A triple-band ±45° dual-polarized dipole antenna is presented in this paper. The proposed antenna covers two bands from n77 and one from n79 5G NR frequency spectrums. The profile antenna exhibits the measured impedance bandwidths 3.6-3.85 GHz, 4.05-4.2 GHz and 4.8- 5.15 GHz with S11, S22 < - 15dB return loss. Antenna is fabricated with four substrates; one radiator, one reflector and two feeding baluns. Antenna is designed and optimized with HFSS simulator and fabricated for experimental verification. Antenna gives a stable radiation pattern with 8.55dBi high gain and 70° half power beam width (HPBW) that makes it a good candidate for wireless 5G sub-6 GHz and multiband base station applications. Finally, antenna is tested in a realistic application environment to show the utility of the proposed antenna for wireless sub-6 GHz IoT applications.


Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2141
Author(s):  
Junghoon Cha ◽  
Choon-Seong Leem ◽  
Ikhwan Kim ◽  
Hakyoung Lee ◽  
Hojun Lee

In this study, we proposed an indoor broadband dual-polarized 2 × 2 MIMO (multiple-input and multiple-output) antenna having dimensions of 240 mm × 200 mm × 40 mm, for application in 5G wireless communication systems. The proposed antenna comprised two vertically polarized circular monopole antennas (CMAs), two horizontally polarized modified rectangular dipole antennas (MRDAs), and a ground plane. The distance between the two MRDAs (MRDA1 and MRDA2) was 70.5 mm and 109.5 mm in the horizontal (x-direction) and 109.5 mm vertical (y-direction) directions, respectively. Conversely, the distance between the two CMAs (CMA1 and CMA2) was 109.5 mm and 70.5 mm in the horizontal (x-direction) and vertical (y-direction) directions, respectively. While the CMAs achieved broadband characteristics owing to the optimal gap between the dielectric and the driven radiator using a parasitic element, the MRDAs achieved broadband owing to the optimal distance between the dipole antennas. The observations in this experiment confirmed that the proposed could operate in the 5G NR n46 (5.15–5.925 GHz), n47 (5.855–5.925 GHz), n77 (3.3–4.2 GHz), n78 (3.3–3.8 GHz), and the n79 (4.4–5 GHz) bands. Moreover, it exhibited a wide impedance bandwidth (dB magnitude of ) of 101% in the 2.3–7 GHz frequency range, high isolation (dB magnitude of ), low envelope coefficient correlation (ECC), gain of over 5 dB, and average radiation efficiency of 87.19%, which verified its suitability for application in sub-6 GHz 5G wireless communication systems.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Yuxuan Huang ◽  
Zeqi Zhu ◽  
Shuting Cai ◽  
Xiaoming Xiong ◽  
Yuan Liu

A wideband dual-polarized multidipole antenna for base station applications is proposed. It consists of a pair of large square-shaped loop dipoles and a pair of small rectangle loop dipoles as radiation elements. A pair of small rectangle loop dipoles is fed by T-shaped feed structure which is in the large square-shaped loop dipoles radiating arm so that the antenna generates an additional resonance and obtains a wider bandwidth. The proposed antenna was fabricated and measured, and the results show that the antenna achieves a wide impedance bandwidth of 63.7 % with VSWR<1.5 covering the frequency range from 1.55 to 3 GHz. A high isolation is better than 29 dB within the operating frequency bandwidth. Moreover, an average gain 8 dBi and a stable radiation pattern with 3 dB beamwidth of 69° ± 4° at H-plane are obtained.


Sign in / Sign up

Export Citation Format

Share Document