scholarly journals Ultrasonic Pretreatment-Assisted Electrohydrodynamic Drying of Potato Slices

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Zhiyuan Cao ◽  
Changjiang Ding ◽  
Rui Zhao ◽  
Zhiqing Song ◽  
Hao Chen

To investigate the drying characteristics and mechanism during electrohydrodynamic (EHD) drying with ultrasonic pretreatment, the ultrasonic pretreatment-assisted EHD drying method at different power values was used to carry out the drying experiment of potatoes. To carry out this study, potato slices were pretreated with different ultrasonic power values (150, 180, 210, 240, and 270 W) or without ultrasound for 30 min at 30°C. The corresponding voltage was 18 kV during EHD drying. The moisture ratio, drying rate, color, shrinkage, and rehydration rate of potatoes were determined. The microstructure of potatoes was analyzed using infrared spectroscopy and scanning electron microscopy. Eight mathematical models were used to fit the drying of potatoes. Results showed that, compared with the control group, the ultrasonic pretreatment combined with the EHD drying group had improved the drying rate of potato slices, which was different at varying ultrasonic power values. Ultrasonic pretreatment had a remarkable effect on the color of the potato but had little effect on the shrinkage rate. The maximum rehydration rate is 5.7704 at 180 W. The minimum and maximum values of effective moisture diffusivity (Deff) were 3.4070 × 10−7 m2/s and 4.1160 × 10−7 m2/s, respectively. The effect of ultrasonic power pretreatment on the microstructure of potato in the EHD drying process was significant ( p > 0.05 ). According to the statistical parameter evaluation, eight mathematical models could satisfactorily describe drying curves of potato slices dried under EHD with ultrasonic pretreatment, and the logarithmic model was best suited. This work provides a theoretical basis and practical guidance to further understand the parameter characteristics and mechanism of ultrasonic pretreatment combined with the EHD drying technology.

2017 ◽  
Vol 23 (3) ◽  
pp. 431-440 ◽  
Author(s):  
Mohsen Beigi

An experimental and numerical study was conducted to investigate the process of potato slices drying. For simulating the moisture transfer in the samples and predict the dehydration curves, a two-dimensional finite element model was developed and programmed in Compaq Visual Fortran, version 6.5. The model solved the Fick?s second law for slab in a shrinkage system to calculate the unsteady two-dimensional moisture transmission in rectangular coordinates (x,y). Moisture diffusivity and moisture transfer coefficient were determined by minimizing the sum squares of residuals between experimental and numerical predicted data. Shrinkage kinetics of the potato slices during dehydration was determined experimentally and found to be a linear function of removed moisture. The determined parameters were used in the mathematical model. The predicted moisture content values were compared to the experimental data and the validation results demonstrated that the dynamic drying curves were predicted by the methodology very well.


2021 ◽  
Vol 11 (3) ◽  
pp. 1297
Author(s):  
Ebrahim Taghinezhad ◽  
Mohammad Kaveh ◽  
Antoni Szumny

The present study examined the effect of ultrasonic pretreatment at three time the levels of 10, 20 and 30 min on some thermodynamic (effective moisture diffusivity coefficient(Deff), drying time, specific energy consumption (SEC), energy efficiency, drying efficiency, and thermal efficiency) and physical (color and shrinkage) properties of kiwifruit under hybrid hot air-infrared(HAI) dryer at different temperatures (50, 60 and 70 °C) and different thicknesses (4, 6 and 8 mm). A total of 11 mathematical models were applied to represent the moisture ratio (MR) during the drying of kiwifruit. The fitting of MR mathematical models to experimental data demonstrated that the logistic model can satisfactorily describe the MR curve of dried kiwifruit with a correlation coefficient (R2) of 0.9997, root mean square error (RMSE) of 0.0177 and chi-square (χ2) of 0.0007. The observed Deff of dried samples ranged from 3.09 × 10−10 to 2.26 × 10−9 m2/s. The lowest SEC, color changes and shrinkage were obtained as 36.57 kWh/kg, 13.29 and 25.25%, respectively. The highest drying efficiency, energy efficiency, and thermal efficiency were determined as 11.09%, 7.69% and 10.58%, respectively. The results revealed that increasing the temperature and ultrasonic pretreatment time and decreasing the sample thickness led to a significant increase (p < 0.05) in drying efficiency, thermal efficiency, and energy efficiency, while drying time, SEC and shrinkage significantly decreased (p < 0.05).


2009 ◽  
Vol 55 (No. 3) ◽  
pp. 114-120 ◽  
Author(s):  
E. Mirzaee ◽  
S. Rafiee ◽  
A. Keyhani ◽  
Z. Emam-Djomeh

In this study, Fick’s second law was used as a major equation to calculate the moisture diffusivity for apricot fruit with some simplification. Drying experiments were carried out at the air temperatures of 40, 50, 60, 70, and 80°C and the drying air velocity of 1, 1.5 and 2 m/s. The experimental drying curves showed only a falling drying rate period. The calculated value of the moisture diffusivity varied from 1.7 × 10<sup>–10</sup> to 1.15 × 10<sup>–9</sup> m<sup>2</sup>/s for apricot fruit, and the value of activation energy ranged from 29.35 to 33.78 kJ/mol at different velocities of air.


2011 ◽  
Vol 236-238 ◽  
pp. 2505-2509
Author(s):  
Xin Yi He ◽  
Jin Fu Liu ◽  
Li Li Cheng ◽  
Bu Jiang Wang

Drying characteristics of crispy winter jujube dried by explosion puffing drying at different vacuum drying temperature were investigated. Selection of the best model was examined by comparing the determination of coefficient (R2), root means square error (RMSE), and mean relative percentage error (P) between the experimental and predicted values. As expected, higher drying rates were obtained with higher vacuum drying temperature. The results showed that the Modified Henderson and Pabis model provided better simulation of drying curves for crispy winter jujube according to thin-layer drying theory. The effective moisture diffusivity of crispy winter jujube dried by explosion puffing drying with higher vacuum drying temperature was higher than the others.


2014 ◽  
Vol 69 (9) ◽  
pp. 1859-1866 ◽  
Author(s):  
Hui-Ling Wang ◽  
Zhao-Hui Yang ◽  
Jing Huang ◽  
Li-Ke Wang ◽  
Cheng-Liu Gou ◽  
...  

As dewatered sludge is highly viscous and sticky, the combination of foaming pretreatment and drying process seems to be an alternative method to improve the drying performance of dewatered sludge. In this study, CaO addition followed by mechanical whipping was employed for foaming the dewatered sludge. It was found that the foams were stable and the diameters of bubbles mainly ranged from 0.1 to 0.3 mm. The drying experiments were carried out in a drying oven in the convective mode. The results indicated that foamed sludge at 0.70 g/cm3 had the best drying performance at each level of temperature, which could save 35–45% drying time to reach 20% moisture content compared with the non-foamed sludge. The drying rate of foamed sludge at 0.70 g/cm3 was improved with the increasing of drying temperature. The impact of sample thickness on drying rate was not obvious when the sample thickness increased from 2 to 8 mm. Different mathematical models were used for the simulation of foamed sludge drying curves. The Wang and Singh model represented the drying characteristics better than other models with coefficient of determination values over 0.99.


2011 ◽  
Vol 396-398 ◽  
pp. 1306-1312 ◽  
Author(s):  
Bao Yan Zhang ◽  
Yin Zhe Jin ◽  
Yu Dong Cheng

To study the effect of microwave output power on the drying kinetics of tilapia fillets, the drying experiments were carried out at 150W, 250W, 500W, 700W and 900W, respectively. And ten mathematical models were involved to fit experimental data. It was found that Midilli et al model gave a best fitness for this conditions applied. Besides, effective moisture diffusivity increased progressively from 1.6248×10-9(m2/s) to 10.0735×10-9(m2/s) as the power increased from 150W to 900W. In addition, to obtain more homogeneous samples, temperature distribution of tilapia fillets was analyzed when they were put in different layout forms.


2012 ◽  
Vol 10 (1) ◽  
pp. 87-97 ◽  
Author(s):  
M. S. Islam ◽  
M. A. Haque ◽  
M. N. Islam

The present study quantifies the drying kinetics of green banana during mechanical dehydration. The effect of loading density (sample thickness) and the temperature on the drying rate constant and drying time were investigated and quantified. Drying rate increased with increasing temperature but decreased with increase in loading density. The values of exponent ‘n’ of the two parameters power law model describing the drying rate constant (as a function of thickness) were less than 2 which indicated the presence of significant external resistance to mass transfer despite the dominance of internal mass transfer resistance.  Investigation with three drying air temperatures (55, 60 and 65oC) at constant air velocity (0.6 m/sec) resulted that the increase in drying air temperature increased the drying process.  The moisture diffusivity values were 1.25×10-10, 1.67×10-10 and 2.19×10-10 m2/sec at 55, 60 and 65oC respectively. The activation energy (Ea) indicating the temperature dependence of the diffusivity was 51.21 KJ/mole obtained using Arrhenius model. Mixing of green banana flour in the potato chips formulation enhanced the fiber and mineral content in the product.DOI: http://dx.doi.org/10.3329/agric.v10i1.11069The Agriculturists 2012; 10(1): 87-97


2014 ◽  
Vol 13 (1) ◽  
pp. 67-74 ◽  
Author(s):  
Wilton Pereira da Silva ◽  
Cleide M.D.P.S. e Silva ◽  
Fernando J.A. Gama ◽  
Josivanda Palmeira Gomes

2012 ◽  
Vol 472-475 ◽  
pp. 1645-1651
Author(s):  
Jian Jun Hu ◽  
Sheng Qiang Shen ◽  
Ting Zhou Lei ◽  
Hao Huang ◽  
Quan Guo Zhang

Constant-temperature drying tests for cotton straw under different conditions were performed with an integrated thermal analyzer, and the influence of different drying conditions on the drying process was analyzed. The process was divided into preheating stage, constant-rate drying stage, and decelerating drying stage. Regression analysis was conducted for drying curves at the latter two stages, and then the drying time at the critical point was determined. Regression equations of drying rate at these stages were produced. Research results showed that the decelerating drying stage of cotton straw included two decelerating intervals, and the best ending point of the drying of the cotton straw that had an initial moisture content of 56.1% and a drying temperature of 100°Cwas 600s, thus providing experimental data and reference for research on drying technology of straws.


Sign in / Sign up

Export Citation Format

Share Document