scholarly journals Pressure-Relief Mechanism and Application of Large-Diameter Boreholes in Coal Seams with Rockburst Hazard

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zhen Hao ◽  
Guangzhong Sun ◽  
Haihang Wei ◽  
Jiayu Liu ◽  
Maolin Tian ◽  
...  

Drilling of large-diameter boreholes is regarded as an effective measure for rockburst prevention. By investigating the morphological characteristic and evolution of plastic zone in borehole surrounding rock, the pressure-relief mechanism of large-diameter borehole was ascertained, and the engineering application of large-diameter boreholes was assessed in the 13230 working face of Gengcun Coal Mine, Henan Province, China. The results showed that (1) the plastic zone in surrounding rock of borehole appear as circular, elliptical, and butterfly shapes, in which the maximum size of the butterfly wings of the plastic zone is several times larger than the borehole diameter; (2) under certain stress conditions, multiple large-diameter boreholes distributed in coal seam with rockburst risk lead to the generation and coalescence of large-range butterfly-shape plastic zone. They reduce the stress concentration and capacity for storing elastic energy of coal seam, thus reducing the rockburst risk of the coal seam; (3) large-diameter boreholes significantly decrease the stress concentration in front of the 13230 working face and improve the stress environment in the head entry, promoting the safe mining of the working face.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Ke Ding ◽  
Lianguo Wang ◽  
Mei Yu ◽  
Wenmiao Wang ◽  
Bo Ren

Rock bursts in coal mines are usually unpredictable. In view of this problem, the energy–frequency relationship and spatial distribution characteristics of microseismic events during the mining of 5305 working face in Xinhe Coal Mine under complex geological conditions were analyzed in this study. Besides, the law and precursors of rock burst occurrence in this working face were discussed. The following research results were obtained. Before the rock burst occurred in 5305 working face, the energy and frequency of microseismic events vary in the following order: “peak-drop-rise-rock burst.” The analysis on spatial characteristics of microseismic events suggests that microseismic events were mainly concentrated at the boundary between the roof and the coal seam or at the hard roof near the coal seam within 0–160 m in front of the working face, and most of the events lay on the goaf side. Moreover, the energy and frequency of microseismic events both decrease in the above region before the rock burst occurred. This “microseismic event absence” phenomenon can be regarded as one of the precursors of rock burst occurrence. In addition, a multilevel antiburst scheme was proposed for the complex conditions: (1) to adopt large-diameter boreholes pressure relief technology and key layer high-level pressure relief technology for adjusting the stress distribution in the surrounding rock of crossheading in front of the working face and dissipating elastic strain energy; (2) to determine the advance speed to be 1.5 m/d for reducing the mining disturbance; (3) to adopt full-section reinforced support of the roadway for enhancing the antiburst capacity of surrounding rock. After the implementation of this scheme, the energy and frequency of microseismic events monitored on-site changed gently, and 5305 working face was safely recovered to the stop line position. The scheme boasts a remarkable rock burst prevention and control effect.



2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yong Zhang ◽  
Huichen Xu ◽  
Peng Song ◽  
Xiaoming Sun ◽  
Manchao He ◽  
...  

The stress concentration of gob-side entry surrounding rock is a hot topic in coal mining. In this paper, through theoretical analysis and numerical simulation, the pressure relief mechanism of the gob-side entry retaining by roof cutting and pressure release (RCPR) and the spatiotemporal development law of surrounding rock stress of the gob-side entry were analyzed. The studies showed that the gob-side entry retaining by RCPR shortened the length of the lateral cantilever by directional roof cutting, which weakened the stress level of the gob-side entry. In the meantime, the goaf gangues could play a good filling role by using their breaking and swelling characteristics under the action of gangue-blocking supports and further optimized the stress environment along the roadway. Field industrial tests verified that the gob-side entry retaining by RCPR had a significant effect on pressure relief, and the surrounding rock stress and deformation tended to stabilize after about 160 m of lagging working face. Numerical analysis reproduced the whole process of “mining-retention-using” of roof cutting roadway and revealed that surrounding rocks were always in the zone of relative stress reduction during the whole process. The peak value of mining-induced lateral stress was about 10 m away from the middle point of the gob-side entry. The change of surrounding rock stress could be divided into three stages: significant increase, dynamic adjustment, and stable stage. However, during the second mining, the stress connected zone would appear on the leading working face, and the stress concentration in this zone was significant. Based on the above analysis, we concluded that the new technology could be applied to the medium-thickness coal seam in the composite roof.



2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Xingen Ma ◽  
Manchao He ◽  
Xuewei Sun ◽  
Jianfeng Li ◽  
Gang He ◽  
...  

Gob-side entry retaining technology with roof cutting (GERRC) has been widely used in flat and near-flat coal seam conditions, but its application under inclined coal seam is still very deficient. In order to further improve the application system of GERRC and overcome the application difficulties under special geological conditions, this paper takes the 43073 working face of Yixin coal mine as an example to research the GERRC with upper roadway under gently inclined thick coal seam. Firstly, the difficulties in the upper entry retaining with inclined coal seam are analyzed and the corresponding key technologies and system designs are put forward. Subsequently, the roof cutting and upper entry retaining are designed in detail according to geological conditions of test working face, and the roof cutting and pressure releasing effect is analyzed by numerical simulation to expound the stress distribution and pressure releasing mechanism of surrounding rock. Finally, the upper entry retaining field test is carried out to verify the feasibility and applicability of the technology and related designs. Through field monitoring, it is found that the weighting step increases significantly, the weighting strength decreases effectively on the roof cutting side, and the pressure relief effect is obvious. Meanwhile, the maximum roof to floor convergence is 361 mm and the maximum shrinkage of both sides is 280 mm, so the retained entry can meet the reuse requirement of adjacent working face.



2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Zhihua Li ◽  
Ke Yang ◽  
Jianshuai Ji ◽  
Biao Jiao ◽  
Xiaobing Tian

A case study based on the 401103 fully mechanized caving face in the Hujiahe Coal Mine was carried out in this research to analyze the rock burst risks in a 54 m-wide coal pillar for roadway protection. Influencing factors of rock burst risks on the working face were analyzed. Stress distribution characteristics on the working face of the wide coal pillar for roadway protection were discussed using FLAC3D numerical simulation software. Spatial distribution characteristics of historical impact events on the working face were also investigated using the microseismic monitoring method. Results show that mining depth, geological structure, outburst proneness of coal strata, roof strata structure, adjacent mining area, and mining influence of the current working face are the main influencing factors of rock burst on the working face. Owing to the collaborative effects of front abutment pressure of the working face and lateral abutment pressure in the goaf, the coal pillar is in the ultimate equilibrium state and microseismic events mainly concentrate in places surrounding the coal pillars. Hence, wide coal pillars become the regions with rock burst risks on the working face. The working face adopts some local prevention technologies, such as pressure relief through presplitting blasting in roof, pressure relief through large-diameter pores in coal seam, coal seam water injection, pressure relief through large-diameter pores at bottom corners, and pressure relief through blasting at bottom corners. Moreover, some regional prevention technologies were proposed for narrow coal pillar for roadway protection, including gob-side entry, layer mining, and fully mechanized top-coal caving face with premining top layer.



2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Wenjing Liu ◽  
Deyu Qian ◽  
Xingguo Yang ◽  
Sujian Wang ◽  
Jinping Deng ◽  
...  

Rock burst is a typical dynamic disaster in deep underground coal mining. Based on the support problems of the deep roadways in fully mechanized caving face 401111 of Hujiahe Coal Mine suffering from rock burst in Shaanxi Province of China, the failure law and influencing factors of the surrounding rock of the roadway are analyzed. The results show that the deformation of surrounding rock in the roadway shows the characteristics of elastic, plastic transformation, rheology, and expansion. At the same time, it has the typical characteristics of deep roadway, such as the fast deformation speed, long duration, asymmetric deformation, and large loose broken area of surrounding rock. Based on the principle of “strengthening support in shallow zones” and “deep pressure relief in deep zones” in the surrounding rock, the control scheme of surrounding rock in the return roadway of fully mechanized caving working face 401111 is proposed by taking the large diameter pressure relief and deep hole blasting as the main means of pressure relief. The practice shows that the surrounding rock of the return roadway is relatively stable after the implementation of the new scheme, which shows that the design of the new support scheme is reasonable and reliable. It is of great significance for the stability control of surrounding rock of the mining roadway suffering from rock burst.



2021 ◽  
pp. 014459872110093
Author(s):  
Wei Zhang ◽  
Jiawei Guo ◽  
Kaidi Xie ◽  
Jinming Wang ◽  
Liang Chen ◽  
...  

In order to mine the coal seam under super-thick hard roof, improve the utilization rate of resources and prolong the remaining service life of the mine, a case study of the Gaozhuang Coal Mine in the Zaozhuang Mining Area has been performed in this paper. Based on the specific mining geological conditions of ultra-close coal seams (#3up and #3low coal seams), their joint systematic analysis has been performed, with the focus made in the following three aspects: (i) prevention of rock burst under super-thick hard roof, (ii) deformation control of surrounding rock of roadways in the lower coal seam, and (iii) fire prevention in the goaf of working face. Given the strong bursting tendency observed in upper coal seam and lower coal seam, the technology of preventing rock burst under super-thick hard roof was proposed, which involved setting of narrow section coal pillars to protect roadways and interleaving layout of working faces. The specific supporting scheme of surrounding rock of roadways in the #3low1101 working face was determined, and the grouting reinforcement method of local fractured zones through Marithan was further proposed, to ensure the deformation control of surrounding rock of roadways in lower coal seams. The proposed fire prevention technology envisaged goaf grouting and spraying to plug leaks, which reduced the hazard of spontaneous combustion of residual coals in mined ultra-close coal seams. The technical and economic improvements with a direct economic benefit of 5.55 million yuan were achieved by the application of the proposed comprehensive technical support. The research results obtained provide a theoretical guidance and technical support of safe mining strategies of close coal seams in other mining areas.



2019 ◽  
Vol 2019 ◽  
pp. 1-21 ◽  
Author(s):  
Cheng Zhu ◽  
Yong Yuan ◽  
Zhongshun Chen ◽  
Zhiheng Liu ◽  
Chaofeng Yuan

The stability control of the rock surrounding recovery roadways guarantees the safety of the extraction of equipment. Roof falling and support crushing are prone to occur in double-key strata (DKS) faces in shallow seams during the extraction of equipment. Therefore, this paper focuses on the stability control of the rock surrounding DKS recovery roadways by combining field observations, theoretical analysis, and numerical simulations. First, pressure relief technology, which can effectively release the accumulated rock pressure in the roof, is introduced according to the periodic weighting characteristics of DKS roofs. A reasonable application scope and the applicable conditions for pressure relief technology are given. Considering the influence of the eroded area on the roof structure, two roof mechanics models of DKS are established. The calculation results show that the yield load of the support in the eroded area is low. A scheme for strengthening the support with individual hydraulic props is proposed, and then, the support design of the recovery roadway is improved based on the time effects of fracture development. The width of the recovery roadway and supporting parameters is redesigned according to engineering experience. Finally, constitutive models of the support and compacted rock mass in the gob are developed with FLAC3D software to simulate the failure characteristics of the surrounding rock during pressure relief and equipment extraction. The surrounding rock control effects of two support designs and three extraction schemes are comprehensively evaluated. The results show that the surrounding rock control effect of Scheme 1, which combines improved support design and the bidirectional extraction of equipment, is the best. Engineering application results show that Scheme 1 realizes the safe extraction of equipment. The research results can provide a reference and experience for use in the stability control of rock surrounding recovery roadways in shallow seams.



2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Wenyu Lv ◽  
Kai Guo ◽  
Jianhao Yu ◽  
Xufeng Du ◽  
Kun Feng

The movement of the overlying strata in steeply dipping coal seams is complex, and the deformation of roof rock beam is obvious. In general, the backfill mining method can improve the stability of the surrounding rock effectively. In this study, the 645 working face of the tested mine is used as a prototype to establish the mechanical model of the inclined roof beam using the sloping flexible shield support backfilling method in a steeply dipping coal seam, and the deflection equation is derived to obtain the roof damage structure and the maximum deflection position of the roof beam. Finally, numerical simulation and physical similarity simulation experiments are carried out to study the stability of the surrounding rock structure under backfilling mining in steeply dipping coal seams. The results show the following: (1) With the support of the gangue filling body, the inclined roof beam has smaller roof subsidence, and the maximum deflection position moves to the upper part of working face. (2) With the increase of the stope height, the stress and displacement field of the surrounding rock using the backfilling method show an asymmetrical distribution, the movement, deformation, and failure increase slowly, and the increase of the strain is relatively stable. Compared with the caving method, the range and degree of the surrounding rock disturbed by the mining stress are lower. The results of numerical simulation and physical similarity simulation experiment are generally consistent with the theoretically derived results. Overall, this study can provide theoretical basis for the safe and efficient production of steeply dipping coal seams.



2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Dongdong Chen ◽  
En Wang ◽  
Shengrong Xie ◽  
Fulian He ◽  
Long Wang ◽  
...  

Multi-coal-seam mining creates surrounding rock control difficulties, because the mining of a coal face in one seam can affect coal faces in another. We examine the effects of multi-coal-seam mining on the evolution of the deviatoric stress distribution and plastic zone in the roadway surrounding rock. In particular, we use numerical simulation, theoretical calculation, drilling detection, and mine pressure observation to study the distribution and evolution characteristics of deviatoric stress on Tailgate 8709 in No. 11 coal seam in Jinhuagong mine when the N8707 and N8709 coal faces in No. 7-4 coal seam and the N8707 and N8709 coal faces in No. 11 coal seam are mined. The evolution laws of deviatoric stress and the plastic zone of roadway surrounding rock in the advance and behind sections of the coal face are studied, and a corresponding control technology is proposed. The results show that the peak value of deviatoric stress increases with the advance of the coal face, and the positions of the peak value of deviatoric stress and the plastic zone become deeper. The deflection angle of the peak stress after mining at each coal face and the characteristics of the peak zone of deviatoric stress and the plastic zone of the roadway surrounding rock under the disturbance of multi-coal-seam mining are determined. In conclusion, the damage range in the roadway roof in the solid-coal side and coal pillar is large and must be controlled. A combined support technology based on high-strength and high pretension anchor cables and truss anchor cables is proposed; long anchor cables are used to strengthen the support of the roadway roof in the solid-coal side and coal pillar. The accuracy of the calculated plastic zone range and the reliability of the combined support technology are verified through drilling detection and mine pressure observation on site. This research can provide a point of reference for roadway surrounding rock control under similar conditions.



2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Dongdong Chen ◽  
Chunwei Ji ◽  
Shengrong Xie ◽  
En Wang ◽  
Fulian He ◽  
...  

Aiming at the problem of large deformation and instability failure and its control of soft coal and soft roof roadway under intense mining, laboratory experiments, theoretical calculations, Flac3D numerical simulation, borehole peeping, and pressure observation were used to study the deflection characteristics of the deviatoric stress of the gas tailgate and the distribution and failure characteristics of the plastic zone in the mining face considering the strain softening characteristics of the roof and coal of roadway, and then the truss anchor cable-control technology is proposed. The results show the following: (1) The intense mining influence on the working face will deflect the peak deviatoric stress zone (PDSZ) of the surrounding rock of the gas tailgate. The influence distance of PDSZ is about 20 m in advance and 60 m in lag; the PDSZ at the gob side of the roadway is located in the range of 3–5.5 m from the surface of the coal pillar, while the coal wall side is mainly located in the range of 3–4.5 m at the shoulder corner and bottom corner of the solid coal. (2) The intense mining in the working face caused the nonuniform expansion of the surrounding rock plastic area of the gas tailgate. The two shoulder angles of the roadway and the bottom of the coal pillar have the largest damage range, and the maximum damage location is the side angle of the coal pillar (5 m). Angle and bottom angle of coal pillar are the key points of support control. (3) The plastic failure line of the surrounding rock of the gas tailgate is always between the inner and outer contours of the PDSZ, and the rock mass in the PDSZ is in a stable and unstable transition state, so the range of anchor cable support should be cross plastic failure line. (4) The theoretical calculations and numerical simulation results agree well with the drilling peep results. Based on the deflection law of the PDSZ and the expansion characteristics of the plastic zone, a truss anchor cable supporting system with integrated locking and large-scale support function is proposed to jointly control the roof and the two sides, which effectively solves the problem of weak surrounding rock roadway under severe mining deformation control problems realizing safety and efficient production in coal mines under intense mining.



Sign in / Sign up

Export Citation Format

Share Document