scholarly journals A Magnetoelectric Hybrid Hydraulic Damper for the Mining Robot Suspension System

2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Kun Hu ◽  
Fei Li ◽  
Zhiyuan Zhang ◽  
Shuang Wang ◽  
Hao Jiang

In order to improve the damping and controllability of the mining robot suspension system, a new magnetoelectric hybrid suspension hydraulic damper, which is a semiactive suspension damper, is proposed based on the traditional hydraulic damper by introducing the magnetic-electric hybrid suspension structure. The structure and working principle of the damper are introduced, respectively, and the mathematical models of the equivalent stiffness and equivalent damping of the system are calculated by the magnetic circuit method and the oil circuit method, while AMESim/Simulink cosimulation is carried out. In order to test the damping performance, a prototype of the magnetoelectric hybrid suspension hydraulic damper was fabricated. The results show that the vibration displacement amplitude can be reduced by 20% and the vibration acceleration amplitude can be reduced by 10% by adjusting the stiffness and damping of the system due to the magnetoelectric hybrid suspension structure. Moreover, the experimental results are consistent with the simulation results, which verify the effectiveness and superiority of this type of damper.

2018 ◽  
Vol 24 (22) ◽  
pp. 5302-5311 ◽  
Author(s):  
FS Li ◽  
Q Chen ◽  
JH Zhou

The dual-chamber solid and liquid mixture (SALiM) isolator exhibits multiple stiffness and damping properties with various parameters. As a passive isolation device, the dual-chamber SALiM isolator can also obtain a variable stiffness property by substituting the valve with an active throttle device. Before that, the dynamic properties of the isolator need to be further investigated. Sine sweep tests under different valve openings were implemented to analyze the frequency response characteristics of the system. Two hydro pressure sensors were added into the two chambers to record the pressure signals, with which the equivalent stiffness, equivalent damping, fluid damping, and equivalent mass of the liquid column were identified. Based on the test results, numerical and theoretical analysis, the dynamic properties of the isolator including the influence of the fluid damping and inertia mass on the equivalent stiffness, the relation between the isolator's equivalent damping and the fluid damping, the fluid capacity of the linking tube, and the equivalent mass of the liquid column were analyzed in depth. Conclusions about stiffness and damping obtained from the test results correspond well with those from the theoretical analysis, but the identification results of the equivalent mass, which show that the negative correlation of equivalent mass of the liquid column with its response amplitude seems controversial. An assumption is proposed to explain the abnormal characteristics of the liquid column. However, the exact model of the inertia track needs further exploration and verification.


2017 ◽  
Vol 9 (7) ◽  
pp. 168781401770054 ◽  
Author(s):  
Guo-feng Yao ◽  
Jianhong Hou ◽  
Pinbin Zhao

The purpose of this work is to present a methodology for calculating the equivalent stiffness matrix of the wheel center of the vehicle suspension. For a suspension, the stiffness matrix of the wheel center, which is effected by the bushings and flexible linkages, control the suspension’s elasto-kinematic ( e–k) specification. The equivalent stiffness matrix of the wheel center is formulated by using the stiffness of the bushings and linkages. And the models of series and parallel springs are used to calculate this equivalent stiffness matrix based on the number of the bushings and linkages. An example is presented to illustrate how to use the proposed methodology to derive the equivalent stiffness matrix of a suspension system with three bushings and flexible linkages. The results show that the equivalent stiffness of the wheel center will decrease if the linkage stiffness is considered. This methodology can be used in all kinds of suspension structure. It can also be used to optimize and design the suspension system.


2014 ◽  
Vol 1027 ◽  
pp. 282-285
Author(s):  
Yue Min Zhang ◽  
Yu Qing Wang

In this paper, regarding the monitoring robot body as the research object, the dynamic model of the monitoring robot hoisted on the monorail electric vehicle has been established with surface defects of I-steel rails as exciting forces. In this model, the contact stiffness and damping between the monorail electric vehicle’s wheels and rails have replaced with equivalent stiffness and equivalent damping.


2019 ◽  
Vol 12 (4) ◽  
pp. 357-366
Author(s):  
Yong Song ◽  
Shichuang Liu ◽  
Jiangxuan Che ◽  
Jinyi Lian ◽  
Zhanlong Li ◽  
...  

Background: Vehicles generally travel on different road conditions, and withstand strong shock and vibration. In order to reduce or isolate the strong shock and vibration, it is necessary to propose and develop a high-performance vehicle suspension system. Objective: This study aims to report a pneumatic artificial muscle bionic kangaroo leg suspension to improve the comfort performance of vehicle suspension system. Methods: In summarizing the existing vehicle suspension systems and analyzing their advantages and disadvantages, this paper introduces a new patent of vehicle suspension system based on the excellent damping and buffering performance of kangaroo leg, A Pneumatic Artificial Muscle Bionic Kangaroo Leg Suspension. According to the biomimetic principle, the pneumatic artificial muscles bionic kangaroo leg suspension with equal bone ratio is constructed on the basis of the kangaroo leg crural index, and two working modes (passive and active modes) are designed for the suspension. Moreover, the working principle of the suspension system is introduced, and the rod system equations for the suspension structure are built up. The characteristic simulation model of this bionic suspension is established in Adams, and the vertical performance is analysed. Results: It is found that the largest deformation happens in the bionic heel spring and the largest angle change occurs in the bionic ankle joint under impulse road excitation, which is similar to the dynamic characteristics of kangaroo leg. Furthermore, the dynamic displacement and the acceleration of the vehicle body are both sharply reduced. Conclusion: The simulation results show that the comfort performance of this bionic suspension is excellent under the impulse road excitation, which indicates the bionic suspension structure is feasible and reasonable to be applied to vehicle suspensions.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4699
Author(s):  
Minming Gu ◽  
Yajie Wei ◽  
Haipeng Pan ◽  
Yujia Ying

This paper presents a new algorithm based on model reference Kalman torque prediction algorithm combined with the sliding root mean square (SRMS). It is necessary to improve the accuracy and reliability of the pinch detection for avoiding collision with the height adjustable desk and accidents on users. Motors need to regulate their position and speed during the operation using different voltage by PWM (Pulse Width Modulation) to meet the requirement of position synchronization. It causes much noise and coupling information in the current sampling signal. Firstly, to analyze the working principle of an electric height adjustable desk control system, a system model is established with consideration of the DC (Direct Current) motor characteristics and the coupling of the system. Secondly, to precisely identify the load situation, a new model reference Kalman perdition method is proposed. The load torque signal is selected as a pinch state variable of the filter by comparing the current signal. Thirdly, to meet the need of the different loads of the electric table, the sliding root means square (SRMS) of the torque is proposed to be the criterion for threshold detection. Finally, to verify the effectiveness of the algorithm, the experiments are carried out in the actual system. Experimental results show that the algorithm proposed in this paper can detect the pinched state accurately under different load conditions.


2011 ◽  
Vol 422 ◽  
pp. 575-579
Author(s):  
Chong Nian Qu ◽  
Liang Sheng Wu ◽  
Jian Feng Ma ◽  
Yi Chuan Xiao

In this document, using the anti-squeezed force model in the narrow parallel plate when fluid is squeezed, the equivalent stiffness and damping model is derived. It is further verified that it can increase the stiffness and damping while there are oil between the joint interfaces theoretically. Because the contact state of oily porous material can divide into liquid and solid parts, the document supposes that it is correct and effective to think the stiffness and damping of the two parts as shunt connection.


Author(s):  
Carlos A. Duchanoy ◽  
Marco A. Moreno-Armendáriz ◽  
Carlos A. Cruz-Villar

In this paper a dynamic optimization methodology for designing a passive automotive damper is proposed. The methodology proposes to state the design problem as a dynamic optimization one by considering the nonlinear dynamic interactions between the damper and the other elements of the suspension system, emphasizing geometry, dimensional and movement constraints. In order to obtain realistic simulations of the suspension, a link between a Computer-Aided Engineering Model (CAEM) and a multi-objective dynamic optimization algorithm is developed. As design objectives we consider the vehicle safety and the passenger comfort which are represented by the contact area of the tire and the vibrations of the cockpit respectively. The damper is optimized by stating a set of physical variables that determine the stiffness and damping coefficients as independent variables for the dynamic optimization problem, they include the spring helix diameter, the spring wire diameter, the oil physical characteristics and the bleed orifice diameters among others. The optimization algorithm that we use to solve the problem at hand is a multi-objective evolutive optimization algorithm. For this purpose we developed a parameterized model of the damper which is used to link the CAE tools and the optimization software, thus enabling fitness evaluations during the dynamic optimization process. By selecting the physical characteristics of the damper as design variables instead of the typical stiffness and damping coefficients, it is possible to consider important design constrains as the damper size, movement limitations and anchor points. As result of the proposed methodology a set of blueprints of non dominated Pareto configurations of the damper are provided to the decision maker.


Author(s):  
Prof. Gaffar G. Momin, Rushikesh Barve, Manasi Shah, Nikita Sutar and Dominic Jibin James

Considering the rate of depletion of the available oil-based fuels, Renewable Energy Technologies are receiving significant attention in these years. It is, therefore, necessary to find alternatives to energy sources. This project focusses on one such alternative. A study is done on a vehicle suspension system and braking system. Suspension in vehicles produces linear vibrations due to the roughness on the roads. These vibrations are absorbed the shock absorbers and dissipated in the form of heat. In the case of a conventional braking system,a huge amount of heat is lost due to friction. This study proposes a design of a system where the heat lost in the suspension system is extracted, converted into a usable form of electrical energy and stored in batteries. This stored energy is further used in the operation of electromagnet powered brakes. Using the Regenerative Suspension System reduces the waste of energy in the shock absorbers and gives an alternative energy source and use of the Electromagnetic Braking System ensures frictionless braking. Thus, the overall consumption of energy is reduced by a notable amount.


Sign in / Sign up

Export Citation Format

Share Document