scholarly journals Dynamic Behavior of Geosynthetic-Reinforced Expansive Soil under Freeze-Thaw Cycles

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhongnian Yang ◽  
Xuesen Liu ◽  
Liang Zhang ◽  
Fujun Niu ◽  
Xianzhang Ling ◽  
...  

Expansive soil has a significant impact on the stability of many key construction projects in cold regions. To study the physical and mechanical properties of expanded soil under the condition of freeze-thaw cycle, cryogenic cyclic triaxial tests were conducted on the dynamic and the displacement characteristics of geosynthetic-reinforced expansive soil subjected to the freeze-thaw cycles. Compared with the unreinforced expansive soil samples, the effects of freeze-thaw cycles on the soil dynamics were discussed. The dynamic shear modulus (Gd) and damping ratio (λ) of the expansive soil samples are improved by reinforcement. Reinforced soil can inhibit the axial compression of the sample and restrain the frost heave deformation of the sample during the freezing process. Meanwhile, it can delay the structural damage effect caused by frost heave and reduce the rate of change of the Gd and the λ with the freeze-thaw cycle. At the same time, reinforced soil can inhibit the axial expansion, reduce the rate of reduction of the Gd, stabilize it with a higher rate, and reduce the influence of the freeze-thaw cycles on the λ of the expansive soil sample. Finally, the change of mechanical properties of expansive soil under the condition of reinforcement is obtained. The main conclusions of this paper can be used to reinforce the roadbed and foundation engineering of frozen soil in a cold region and provide support for the fiber reinforcement method of expansive soil.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Longxiao Chen ◽  
Kesheng Li ◽  
Guilei Song ◽  
Deng Zhang ◽  
Chuanxiao Liu

AbstractRock deterioration under freeze–thaw cycles is a concern for in-service tunnel in cold regions. Previous studies focused on the change of rock mechanical properties under unidirectional stress, but the natural rock mass is under three dimensional stresses. This paper investigates influences of the number of freeze–thaw cycle on sandstone under low confining pressure. Twelve sandstone samples were tested subjected to triaxial compression. Additionally, the damage characteristics of sandstone internal microstructure were obtained by using acoustic emission (AE) and mercury intrusion porosimetry. Results indicated that the mechanical properties of sandstone were significantly reduced by freeze–thaw effect. Sandstone’ peak strength and elastic modulus were 7.28–37.96% and 6.38–40.87% less than for the control, respectively. The proportion of super-large pore and large pore in sandstone increased by 19.53–81.19%. We attributed the reduced sandstone’ mechanical properties to the degenerated sandstone microstructure, which, in turn, was associated with increased sandstone macropores. The macroscopic failure pattern of sandstone changed from splitting failure to shear failure with an increasing of freeze–thaw cycles. Moreover, the activity of AE signal increased at each stage, and the cumulative ringing count also showed upward trend with the increase of freeze–thaw number.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Huren Rong ◽  
Jingyu Gu ◽  
Miren Rong ◽  
Hong Liu ◽  
Jiayao Zhang ◽  
...  

In order to study the damage characteristics of the yellow sandstone containing pores under the freeze-thaw cycle, the uniaxial compression test of saturated water-stained yellow sandstones with different freeze-thaw cycles was carried out by rock servo press, the microstructure was qualitatively analyzed by Zeiss 508 stereo microscope, and the microdamage mechanism was quantitatively studied by using specific surface area and pore size analyzer. The mechanism of weakening mechanical properties of single-hole yellow sandstone was expounded from the perspective of microstructure. The results show the following. (1) The number of freeze-thaw cycles and single-pore diameter have significant effects on the strength and elastic modulus of the yellow sandstone; the more the freeze-thaw cycles and the larger the pore size, the lower the strength of the yellow sandstone. (2) The damage modes of the yellow sandstone containing pores under the freeze-thaw cycle are divided into five types, and the yellow sandstone with pores is divided into two areas: the periphery of the hole and the distance from the hole; as the number of freeze-thaw cycles increases, different regions show different microscopic damage patterns. (3) The damage degree of yellow sandstone is different with freeze-thaw cycle and pore size. Freeze-thaw not only affects the mechanical properties of yellow sandstone but also accelerates the damage process of pores. (4) The damage of the yellow sandstone by freeze-thaw is logarithmic function, and the damage of the yellow sandstone is a power function. The damage equation of the yellow sandstone with pores under the freezing and thawing is a log-power function nonlinear change law and presents a good correlation.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 236
Author(s):  
Xuebang Huang ◽  
Zizhao Zhang ◽  
Ruihua Hao ◽  
Zezhou Guo

Particle size grading impacts salt-frost heaving and dissolution collapse events of salinized soil on northwestern China’s arid and cold region highways. However, the influencing mechanisms remain unclear and the impact of varying particle size grading needs further investigation. Hence, this study focused on these effects and the number of freeze–thaw cycles on the characteristic changes in highway salinized soil in arid and cold regions. Three soil columns with different gradations were prepared to explore the gradation and the number of freeze–thaw cycle affects on salinized soil’s salt-frost heaving and dissolution collapse characteristics. The multi-functional physical simulation platform conducted multiple freeze–thaw cyclic tests in the laboratory. Test results confirmed significant and conclusive effects of gradation and the number of freeze–thaw cycles on salinized soil’s salt-frost heaving and dissolution collapse behaviors. Poorly graded salinized soil with high coarse particle content caused repeated freeze and thaw engineering hazards, significantly affecting salinized soil’s displacement and deformation behaviors during freezing. Contrarily, an increased range of fine particles more easily involved the characteristics of salinized soil during thawing. Therefore, the fourth freeze–thaw cycle was a crucial time node. After four freeze–thaw cycles, the displacement and deformation of original salinized soil and B-grade salinized soil samples (poorly graded with high fine particle content) tended to be stable. In contrast, the displacement and deformation of A-grade salinized soil samples (poorly graded with high coarse particle content) increased the growth rate. The present research results contribute to in-depth knowledge of the effects of gradation and freeze–thaw cycles on the characteristics of salinized soil in northwestern China, providing excellent referenced data support for the prevention and control of highway salinized soil failures and other engineering projects in arid and cold regions of northwest China.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhongnian Yang ◽  
Jianhang Lv ◽  
Wei Shi ◽  
Chao Jia ◽  
Chu Wang ◽  
...  

AbstractThis paper presents an experimental investigation on the effect of freeze–thaw cycling on expansive soil slopes with different initial moisture contents. Clay soil from Weifang, China, was remolded and selected to build the expansive soil slope for the indoor slope model tests. A total of five freeze–thaw cycles were applied to the three expansive soil slopes with different moisture contents ranging from 20 to 40%. Variations of the crack developments, displacements, soil pressures and moisture contents of the expansive soil slope with different initial moisture contents during the freeze–thaw cycling were reported and discussed. The results indicate that higher moisture contents can slow the development of cracks and that the soil pressure increases with decreasing temperature. The soil pressure of slope decreases after freeze–thaw cycle, and the change amplitude of soil pressure after freeze–thaw is proportional to water content. The slopes with a moisture content of 20% and 30% shrinks during freezing and expands during thawing, which was named ES-FSTE Model, while the slope with a 40% moisture content shows the opposite behavior. During freeze–thaw cycles, moisture migrates to slope surface. As initial moisture contents increase, the soil heat transfer rate and bearing capacity decreases after five freeze–thaw cycling.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Chenchen Liu ◽  
Yibiao Liu ◽  
Weizhong Ren ◽  
Wenhui Xu ◽  
Simin Cai ◽  
...  

AbstractDue to the location of the Yungang Grottoes, freeze–thaw cycles contribute significantly to the degradation of the mechanical properties of the sandstone. The factors influencing the freeze–thaw cycle are classified into two categories: external environmental conditions and the inherent properties of the rock itself. Since the parameters of rock properties are inherent to each rock, the effect of rock properties on freeze–thaw degradation cannot be investigated by the control variates method. An adaptive multi-output gradient boosting decision trees (AMGBDT) algorithm is proposed to fit nonlinear relationships between mechanical properties and physical factors. The hyperparameters in the GBDT algorithm are set as variables, and the Sequential quadratic programming (SQP) algorithm is applied to solve the hyperparameter optimization, which means finding the maximum Score. The case study illustrates that the AMGBDT algorithm can precisely determine the effect of each independent factor on the output. The patterns of mechanical properties are similar when the number of freeze–thaw cycles and porosity are used as variables separately and when both are used simultaneously. The uniaxial compressive strength decay rate is positively correlated with the number of freeze–thaw cycles and porosity. The modulus of elasticity is negatively correlated with the number of freeze–thaw cycles and porosity. The results show that the number of freeze–thaw cycles is the main factor influencing the freeze–thaw cycling action, and the porosity is minor. In addition, the fitting accuracy of the AMGBDT algorithm is generally higher than neural networks (NN) and random forests (RF). Studying the influence of porosity and other rock properties on the freeze–thaw cycle will help to understand the failure mechanism of rock freeze–thaw cycles.


2022 ◽  
Vol 11 (01) ◽  
pp. 27-30
Author(s):  
Ekrem Kalkan

The clayey soils in areas with seasonal frost are exposed to at least one freeze-thaw cycle every year and worsen their engineering properties. To prevent the engineering properties of clayey soils, it is necessary to improve the freeze-thaw resistance of them. In this study, the clayey soil was stabilized by using red mud and cement additive materials. Prepared samples of clayey soil and stabilized clayey soil were subjected to the unconfined compressive test. To investigate the effects of red mud and cement additive materials on the freeze-thaw resistance of clayey soil, the natural and stabilized expansive soil samples were exposed to the freeze-thaw cycles under laboratory conditions. The obtained results showed that the red mud and cement additive materials increased the freeze-thaw resistance of clayey soil. Consequently, it was concluded that red mud and cement additive materials can be successfully used to improve the freeze-thaw resistance of clayey soils.


2018 ◽  
Vol 22 (1) ◽  
pp. 53-57
Author(s):  
Haibo Jiang

Under freeze-thaw cycles, the relationship between rock microstructure deterioration and its macroscopic mechanical characteristics has drawn extensive attention from engineers. With the objective to incorporate freeze-thaw cycle experiment into headrace tunnel engineering, in the present study two groups of andesite rock samples in different states are tested under the conditions of the lowest freezing temperature of –40 ℃ and the thawing temperature of 20 ℃. Damage detection was performed by magnetic resonance imaging for the interior microstructure of rock samples subject to different freeze-thaw cycles, and the relationship between the sample mechanical properties and gradual deterioration of rock microstructures was discussed. The results demonstrate evident influence of freeze-thaw cycle on the damage and deterioration of internal pore structure in andesite, and the rock uniaxial compressive strength and elasticity modulus exhibit a decreasing trend with the increase of freeze-thaw cycles. After 40 cycles, the strength of naturally saturated rock samples decreases by 39.4% (equivalent to 69.4 MPa) and the elasticity modulus drops by 47.46% (equivalent to 3.27 GPa). For rock samples saturated by vacuum, 40 freeze-thaw cycles lead to a decrease of 36.86% (equivalent to 58.2 MPa) in rock strength and a drop of 44.85% (equivalent to 2.83 GPa) in elasticity modulus. Therefore, the test results quantitatively elucidate the substantial influence of freeze-thaw cycle on the damage and deterioration of internal structure in andesite.


2013 ◽  
Vol 351-352 ◽  
pp. 570-573
Author(s):  
Zhi Qiang Li ◽  
Xian Chun Zheng ◽  
Xiao Hong Cong

This study focuses on the following: analysis of the basic mechanical properties of freeze-thaw cycles BFRP composite; freeze-thaw cycle on BFRP reinforced concrete structures force performance; provide experimental basis for the the basalt FRP freeze-thaw environment concrete structure andtheoretical support.


Sign in / Sign up

Export Citation Format

Share Document