scholarly journals Qindan Capsule Attenuates Myocardial Hypertrophy and Fibrosis in Pressure Overload-Induced Mice Involving mTOR and TGF-β1/Smad Signaling Pathway Inhibition

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Wenwu Bai ◽  
Min Ren ◽  
Wen Cheng ◽  
Xiaoting Lu ◽  
Deshan Liu ◽  
...  

Qindan capsule (QC), a traditional Chinese medicine compound, has been used to treat hypertension in the clinic for over 30 years. It is still not known about the effects of QC on pressure overload-induced cardiac remodeling. Hence, this study aims to investigate the effects of QC on pressure overload-induced cardiac hypertrophy, fibrosis, and heart failure in mice and to determine the possible mechanisms. Transverse aortic constriction (TAC) surgery was used to induce cardiac hypertrophy and heart failure in C57BL/6 mice. Mice were treated with QC or losartan for 8 weeks after TAC surgery. Cardiac function indexes were evaluated with transthoracic echocardiography. Cardiac pathology was detected using HE and Masson’s trichrome staining. Cardiomyocyte ultrastructure was detected using transmission electron microscopy. Hypertrophy-related fetal gene expression was investigated using real-time RT-PCR. The expression of 8-OHdG and the concentration of MDA and Ang-II were assessed by immunohistochemistry stain and ELISA assay, respectively. The total and phosphorylated protein levels of mTOR, p70S6K, 4EBP1, Smad2, and Smad3 and the expression of TGF-β1 and collagen I were measured using western blot. The results showed that low- and high-dose QC improved pressure overload-induced cardiac hypertrophy, fibrosis, and dysfunction. QC inhibited ANP, BNP, and β-MHC mRNA expression in failing hearts. QC improved myocardial ultrastructure after TAC surgery. Furthermore, QC downregulated the expression of 8-OHdG and the concentration of MDA, 15-F2t-IsoP, and Ang-II in heart tissues after TAC surgery. We also found that QC inhibited the phosphorylation of mTOR, p70S6K, and 4EBP1 and the expression of TGF-β1, p-Smad2, p-Smad3, and collagen I in pressure overload-induced failing hearts. These data indicate that QC has direct benefic effects on pressure overload-induced cardiac hypertrophy, fibrosis, and dysfunction. The protective effects of QC involve prevention of increased oxidative stress injury and Ang-II levels and inhibition of mTOR and TGF-β1/Smad pathways in failing hearts.

Pharmacology ◽  
2021 ◽  
pp. 1-15
Author(s):  
Yong Chen ◽  
Ting He ◽  
Zhongjun Zhang ◽  
Junzhi Zhang

<b><i>Introduction:</i></b> Silent information regulator 1 (SIRT1) has been extensively investigated in the cardiovascular system and has been shown to play a pivotal role in mediating cell death/survival, energy production, and oxidative stress. However, the functional role of SIRT1 in pressure overload-induced cardiac hypertrophy and dysfunction remains unclear. Resveratrol (Rsv), a widely used activator of SIRT1, has been reported to protect against cardiovascular disease. We here examine whether activation of SIRT1 by Rsv attenuate pressure overload-induced cardiac hypertrophy and to identify the underlying molecular mechanisms. <b><i>Methods:</i></b> In vivo, rat model of pressure overload-induced myocardial hypertrophy was established by abdominal aorta constriction (AAC) procedure. In vitro, Angiotensin II (Ang II) was applied to induce hypertrophy in cultured neonatal rat cardiomyocytes (NCMs). Hemodynamics and histological analyses of the heart were evaluated. The expression of SIRT1, transforming growth factor-β1 (TGF-β1)/phosphorylated (p)-small mother against decapentaplegic (Smad)3 and hypertrophic markers were determined by immunofluorescence, real-time PCR, and Western blotting techniques. <b><i>Results:</i></b> In the current study, Rsv treatment improved left ventricular function and reduced left ventricular hypertrophy and cardiac fibrosis significantly in the pressure overload rats. The expression of SIRT1 was significantly reduced, while the expression of TGF-β1/p-Smad3 was significantly enhanced in AAC afflicted rat heart. Strikingly, treatment with Rsv restored the expressions of SIRT1 and TGF-β1/p-Smad3 under AAC influence. However, SIRT1 inhibitor Sirtinol (Snl) markedly prevented the effects of Rsv, which suggest that SIRT1 signaling pathway was involved in the cardiac protective effect of Rsv. In vitro studies performed in Ang II-induced hypertrophy in NCMs confirmed the cardiac protective effect of Rsv. Furthermore, the study presented that SIRT1 negatively correlated with the cardiac hypertrophy, cardiac fibrosis, and the TGF-β1/p-Smad3 expression. <b><i>Conclusions:</i></b> Taken together, these results indicated that activation of SIRT1 by Rsv attenuates cardiac hypertrophy, cardiac fibrosis, and improves cardiac function possibly via regulation of the TGF-β1/p-Smad3 signaling pathway. Our study may provide a potential therapeutic strategy for cardiac hypertrophy.


2009 ◽  
Vol 297 (2) ◽  
pp. H523-H532 ◽  
Author(s):  
John T. Fassett ◽  
Xin Xu ◽  
Xinli Hu ◽  
Guangshuo Zhu ◽  
Joel French ◽  
...  

There is evidence that endogenous extracellular adenosine reduces cardiac hypertrophy and heart failure in mice subjected to chronic pressure overload, but the mechanism by which adenosine exerts these protective effects is unknown. Here, we identified a novel role for adenosine in regulation of the cardiac microtubule cytoskeleton that may contribute to its beneficial effects in the overloaded heart. In neonatal cardiomyocytes, phenylephrine promoted hypertrophy and reorganization of the cytoskeleton, which included accumulation of sarcomeric proteins, microtubules, and desmin. Treatment with adenosine or the stable adenosine analog 2-chloroadenosine, which decreased hypertrophy, specifically reduced accumulation of microtubules. In hypertrophied cardiomyocytes, 2-chloroadenosine or adenosine treatment preferentially targeted stabilized microtubules (containing detyrosinated α-tubulin). Consistent with a role for endogenous adenosine in reducing microtubule stability, levels of detyrosinated microtubules were elevated in hearts of CD73 knockout mice (deficient in extracellular adenosine production) compared with wild-type mice (195%, P < 0.05). In response to aortic banding, microtubules increased in hearts of wild-type mice; this increase was exaggerated in CD73 knockout mice, with significantly greater amounts of tubulin partitioning into the cold-stable Triton-insoluble fractions. The levels of this stable cytoskeletal fraction of tubulin correlated strongly with the degree of heart failure. In agreement with a role for microtubule stabilization in promoting cardiac dysfunction, colchicine treatment of aortic-banded mice reduced hypertrophy and improved cardiac function compared with saline-treated controls. These results indicate that microtubules contribute to cardiac dysfunction and identify, for the first time, a role for adenosine in regulating cardiomyocyte microtubule dynamics.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 931
Author(s):  
Anureet K. Shah ◽  
Sukhwinder K. Bhullar ◽  
Vijayan Elimban ◽  
Naranjan S. Dhalla

Although heart failure due to a wide variety of pathological stimuli including myocardial infarction, pressure overload and volume overload is associated with cardiac hypertrophy, the exact reasons for the transition of cardiac hypertrophy to heart failure are not well defined. Since circulating levels of several vasoactive hormones including catecholamines, angiotensin II, and endothelins are elevated under pathological conditions, it has been suggested that these vasoactive hormones may be involved in the development of both cardiac hypertrophy and heart failure. At initial stages of pathological stimuli, these hormones induce an increase in ventricular wall tension by acting through their respective receptor-mediated signal transduction systems and result in the development of cardiac hypertrophy. Some oxyradicals formed at initial stages are also involved in the redox-dependent activation of the hypertrophic process but these are rapidly removed by increased content of antioxidants in hypertrophied heart. In fact, cardiac hypertrophy is considered to be an adaptive process as it exhibits either normal or augmented cardiac function for maintaining cardiovascular homeostasis. However, exposure of a hypertrophied heart to elevated levels of circulating hormones due to pathological stimuli over a prolonged period results in cardiac dysfunction and development of heart failure involving a complex set of mechanisms. It has been demonstrated that different cardiovascular abnormalities such as functional hypoxia, metabolic derangements, uncoupling of mitochondrial electron transport, and inflammation produce oxidative stress in the hypertrophied failing hearts. In addition, oxidation of catecholamines by monoamine oxidase as well as NADPH oxidase activation by angiotensin II and endothelin promote the generation of oxidative stress during the prolonged period by these pathological stimuli. It is noteworthy that oxidative stress is known to activate metallomatrix proteases and degrade the extracellular matrix proteins for the induction of cardiac remodeling and heart dysfunction. Furthermore, oxidative stress has been shown to induce subcellular remodeling and Ca2+-handling abnormalities as well as loss of cardiomyocytes due to the development of apoptosis, necrosis, and fibrosis. These observations support the view that a low amount of oxyradical formation for a brief period may activate redox-sensitive mechanisms, which are associated with the development of cardiac hypertrophy. On the other hand, high levels of oxyradicals over a prolonged period may induce oxidative stress and cause Ca2+-handling defects as well as protease activation and thus play a critical role in the development of adverse cardiac remodeling and cardiac dysfunction as well as progression of heart failure.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Zhuo Zhao ◽  
Wei Wang ◽  
Hua-Ting Wang ◽  
Qing-Xin Geng ◽  
Di Zhao ◽  
...  

Aims: Cardiac hypertrophy is a maladaptive change in response to pressure overload and is also an important risk for developing heart failure. We previously demonstrated that atorvastatin inhibits cardiac hypertrophy and remodeling in a mouse model of transverse aorta constriction (TAC). This study was designed to determine the regulation of atorvastatin on cardiac autophagy and its association with the development of cardiac hypertrophy and dysfunction in the mice TAC model. Methods and results: TAC or sham operations were performed in male C57/L6 mice at 8 weeks of age. Atorvastatin (50 mg/kg/day) or vehicle (normal saline) were administered daily by oral gavage to TAC mice (n=10 per group). Echocardiography and real-time PCR data showed that chronic atorvastatin treatment for four weeks significantly attenuated pressure overload-induced cardiac hypertrophy and dysfunction, as well as cardiac mRNA level of atrial natriuretic factor (ANF), a biomarker of cardiac hypertrophy and heart failure. After 4 weeks of TAC, results from electron microscopy and Western blot showed that cardiac autophagy was activated, evidenced by the increased expression of microtubule-associated protein-1 light chain 3-II (LC3-II), Beclin-1, caspase-3, and the formation of autophagosomes. Interestingly, cardiac autophagy was further increased by the treatment of atorvastatin for 4 weeks. Western blot analysis showed phosphorylated Akt and mammalian target of rapamycin (p-mTor) decreased in the heart of TAC versus sham mice, which were further decreased by atorvastatin treatment. Conclusions: These findings suggest that atorvastatin attenuates cardiac hypertrophy and dysfunction in TAC mice probably through its regulation on cardiac autophagy via Akt/mTor pathways.


2004 ◽  
Vol 286 (3) ◽  
pp. H1063-H1069 ◽  
Author(s):  
Jin-Jiang Pang ◽  
Rong-Kun Xu ◽  
Xiang-Bin Xu ◽  
Ji-Min Cao ◽  
Chao Ni ◽  
...  

Loss of cardiomyocytes by apoptosis is proposed to cause heart failure. Angiotensin II (ANG II), an important neurohormonal factor during heart failure, can induce cardiomyocyte apoptosis. Inasmuch as hexarelin has been reported to have protective effects in this process, we examined whether hexarelin can prevent cardiomyocytes from ANG II-induced cell death. Cultured cardiomyocytes from neonatal rats were stimulated with ANG II. Apoptosis was evaluated using fluorescence microscopy, TdT-mediated dUTP nick-end labeling (TUNEL) method, flow cytometry, DNA laddering, and analysis of cell viability by (3,4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). It was found that incubation with 0.1 μmol/l ANG II for 48 h increased cardiomyocyte apoptosis. Administration of 0.1 μmol/l hexarelin significantly decreased this ANG II-induced apoptosis and DNA fragmentation and increased myocyte viability. To further investigate the underlying mechanisms, caspase-3 activity assay and mRNA expression of Bax, Bcl-2, and growth hormone secretagogue receptor (GHS-R; the supposed hexarelin binding site) were examined. GHS-R mRNA was abundantly expressed in cardiomyocytes and was upregulated after administration of hexarelin. These results suggest that hexarelin abates cardiomyocytes from ANG II-induced apoptosis possibly via inhibiting the increased caspase-3 activity and Bax expression induced by ANG II and by increasing the expression of Bcl-2, which is depressed by ANG II. Whether the upregulated expression of GHS-R induced by hexarelin is associated with this antiapoptotic effect deserves further investigation.


2021 ◽  
Author(s):  
Ding Xiaoli ◽  
Yuan Qingqing ◽  
Qian Haibing

Abstract Background: Myocardial hypertrophy occurs in many cardiovascular diseases. Leonurine (Leo) is commonly used for cardiovascular and cerebrovascular diseases. However, whether it can prevent cardiac hypertrophy is not known. The aim of this study was to investigate the effect and mechanism of Leonurine (Leo) against pressure-overload cardiac hypertrophy induced by abdominal aortic constriction (AAC) in rats. Methods: To answer this question, we prove it in the following way: Cardiac function was evaluated by hemodynamic; the left ventricle enlargement was measured by heart weight index (HWI) and left ventricular mass index (LVWI); myocardial tissue changes and myocardial cell diameter (MD) were determined by Hematoxylin and eosin (HE) staining; theβ-myosin heavy chain(β-MHC)and atrial natriuretic factor (ANF), which are recognized as a marker of cardiac hypertrophy, were determined by Real-time quantitative PCR (qRT-PCR), then another gene phospholipase C (PLC), inositol triphosphate (IP3), which associated with RAS were determined by Western blot(WB). angiotensin II (Ang II), angiotensin II type 1 receptor (AT1R) were determined by ELISA, WB and qRT-PCR methods. Finally, we measured the level of Ca2+ by microplate method and the protooncogene c-fos and c-myc mRNA in left ventricular myocardium by qRT-PCR.Results: Compare with control group, Leonurine can improve systolic dysfunction; inhibit the increase of left cardiac; inhibit myocardial cells were abnormally large and restrain the changes of cardiac histopathology; decrease the expression of β-MHC, ANF, Ang II, AT1R, c-fos and c-myc mRNA and the protein levels of PLC, IP3, AngII and AT1R in left ventricular myocardium, in addition, the content of Ca2+ also decrease. Conclusion: Therefore, Leonurine can inhibit cardiac hypertrophy induced by AAC and its effects may be associated with RAS.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Yi-Chang Cheng ◽  
Chieh-His Wu ◽  
Wei-Wen Kuo ◽  
James A. Lin ◽  
Hsueh-Fang Wang ◽  
...  

Hypercholesterolemia diets are considered as major sources to cause cardiac hypertrophy. This study intends to evaluate the effects of Li-Fu formula on cardiac hypertrophy induced by hypercholesterolemia diet. Twenty-four male Golden Syrian hamsters were randomly divided into control, cholesterol and Li-Fu formula groups and fed with different experimental diets for 2 months. Histopathological analysis and western blotting were performed to measure the myocardial architecture, and various cardiac hypertrophy-associated molecules in the excised left ventricle from hamsters. The ratios of whole heart weight/body weight (BW) and left ventricle weight/BW were significantly higher in the cholesterol group but significantly lower in the Li-Fu formula group. The protein levels of both atrial natriuretic peptide and brain natriuretic peptide were significantly increased in the cholesterol group but significantly reduced in the Li-Fu formula group. Additionally, significantly increased interleukin-6, STAT3, MEK5, p-ERK5 and non-cardiomyocyte proliferate signal molecules such as p-MEK and p-ERK, were detected in the cholesterol group but significantly reduced in the Li-Fu formula group. Notably, no significant variations of inflammatory signaling molecules, including p-P38 and p-JNK, were detected in all groups. Our experimental results demonstrated the significant reductions of cardiac hypertrophy and related eccentric hypertrophy signaling, non-cardiomyocyte proliferate signaling in the excised left ventricle of hamsters from the Li-Fu formula. We suggested the protective effects of Li-Fu formula on cardiac hypertrophy that may be useful in prevention or treatment of hypertrophy-associated cardiovascular diseases.


2018 ◽  
Vol 115 (1) ◽  
pp. 71-82 ◽  
Author(s):  
Andrea Grund ◽  
Malgorzata Szaroszyk ◽  
Janina K Döppner ◽  
Mona Malek Mohammadi ◽  
Badder Kattih ◽  
...  

Abstract Aims Chronic heart failure is becoming increasingly prevalent and is still associated with a high mortality rate. Myocardial hypertrophy and fibrosis drive cardiac remodelling and heart failure, but they are not sufficiently inhibited by current treatment strategies. Furthermore, despite increasing knowledge on cardiomyocyte intracellular signalling proteins inducing pathological hypertrophy, therapeutic approaches to target these molecules are currently unavailable. In this study, we aimed to establish and test a therapeutic tool to counteract the 22 kDa calcium and integrin binding protein (CIB) 1, which we have previously identified as nodal regulator of pathological cardiac hypertrophy and as activator of the maladaptive calcineurin/NFAT axis. Methods and results Among three different sequences, we selected a shRNA construct (shCIB1) to specifically down-regulate CIB1 by 50% upon adenoviral overexpression in neonatal rat cardiomyocytes (NRCM), and upon overexpression by an adeno-associated-virus (AAV) 9 vector in mouse hearts. Overexpression of shCIB1 in NRCM markedly reduced cellular growth, improved contractility of bioartificial cardiac tissue and reduced calcineurin/NFAT activation in response to hypertrophic stimulation. In mice, administration of AAV-shCIB1 strongly ameliorated eccentric cardiac hypertrophy and cardiac dysfunction during 2 weeks of pressure overload by transverse aortic constriction (TAC). Ultrastructural and molecular analyses revealed markedly reduced myocardial fibrosis, inhibition of hypertrophy associated gene expression and calcineurin/NFAT as well as ERK MAP kinase activation after TAC in AAV-shCIB1 vs. AAV-shControl treated mice. During long-term exposure to pressure overload for 10 weeks, AAV-shCIB1 treatment maintained its anti-hypertrophic and anti-fibrotic effects, but cardiac function was no longer improved vs. AAV-shControl treatment, most likely resulting from a reduction in myocardial angiogenesis upon downregulation of CIB1. Conclusions Inhibition of CIB1 by a shRNA-mediated gene therapy potently inhibits pathological cardiac hypertrophy and fibrosis during pressure overload. While cardiac function is initially improved by shCIB1, this cannot be kept up during persisting overload.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Huey Wen Lee ◽  
Melita Brdar ◽  
Robert Widdop ◽  
Anthony Dear ◽  
Tracey Gaspari

Glucagon-like peptide-1 (GLP-1) based therapies are used to treat type II diabetes via increasing insulin secretion and inhibiting glucagon production. Recent evidence suggests that activating the GLP-1 receptor may also mediate direct vaso-protective effects. Therefore the objective of the study was to determine whether GLP-1R stimulation conferred cardio- and vaso-protection in a non-diabetic setting using the angiotensin (Ang) II infusion model of hypertension and cardiovascular dysfunction. Male C57Bl/6J mice (4-6 months) were assigned to one of the following 4 week treatment protocols: 1) vehicle (saline), 2) Ang II (800ng/kg/day), 3) Ang II + liraglutide (30μg/kg/day), 4) Ang II + liraglutide (300μg/kg/day). All treatments were administered via osmotic mini-pumps (s.c). After 4 weeks the effect of liraglutide treatment on blood pressure, vascular function and cardiac remodelling was examined. Liraglutide (both doses) attenuated Ang II-induced increase in systolic blood pressure (Ang II: 175.3 ± 8.6mmHg vs Ang II+Lirag (30) 150.2 ± 6.4 mmHg or Ang II+Lirag (300): 145.4 ± 6.9 mmHg) without affecting blood glucose levels. Liraglutide (both doses) completely prevented Ang II-induced endothelial dysfunction (% maximum relaxation: Ang II=50.7 ± 7.8%; Ang II+Lirag (30)=82.7 ± 5.8; Ang II+Lirag (300)=81.5 ± 6.1%). In the heart, liraglutide prevented Ang II-induced cardiomyocyte hypertrophy (n=7-10; p<0.05) and reduced collagen deposition (% collagen expression: Ang II=4.4 ± 0.5 vs Ang II+Lirag(300)=2.9 ± 0.3; n=7-9; p<0.01). This anti-fibrotic effect was attributed to reduced fibroblast/myofibroblast expression as well as decreased inflammation with reduced NFκB and MCP-1 expression and decreased oxidative stress with a significant reduction in superoxide production using high dose of liraglutide. Overall, stimulation of GLP-1R in a non-diabetic setting protected against Ang II-mediated cardiac hypertrophy, cardiac fibrosis and vascular dysfunction, indicating potential for use of GLP-1 based therapies in treatment of cardiovascular disease independent of diabetes.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Catherina A Cuevas ◽  
Alexis A Gonzalez ◽  
Nivaldo C Inestrosa ◽  
Carlos P Vio ◽  
Minolfa C Prieto

The prorenin receptor (PRR) is upregulated in the kidney by high angiotensin II (Ang II) states such as those that occur with AngII-dependent hypertension and low salt diet. The PRR is an accessory protein of the vacuolar H-ATPase, which facilitates Wnt/β-catenin signaling. The Wnt/β-catenin pathway is involved in fibrosis processes. In the present study, we aimed to determine whether the stimulation of PRR in mouse collecting duct M-1 cells induces fibrotic genes independently of Ang II, and if this effect is mediated by activation of Wnt/β-catenin. Both Ang II (10 -7 M) and human recombinant prorenin (hRPr; 2,5 x 10 -8 M) treatments (8 and 16 hours) increased mRNA and protein levels of fibronectin and collagen I (1.5±0.08 and 1.5 ± 0.1 fold change, respectibely; p<0.05); however, the effects of hRPr were elicited earlier. Likewise, Ang II and hRPr stimulated the Wnt target genes, cyclin D1 and c-myc (cyclin D1: 2±0.2 for both; c-myc: 1.4 ± 0.03 and 1.2± 0.002 fold change for Ang II and hRPr, respectively; p<0.001). Ang II type 1 receptor (AT1R) blockade with candesartan (10 -7 M) completely prevented the Ang II-dependent stimulation but not the effects of hRPr on Wnt signaling genes. Upregulation of fibronectin and collagen I genes by Ang II or hRP at 16 h was prevented by Wnt signaling inhibition with Pyrvinium Pamoate (10 -7 M). The data indicate that in M-1 cells, activation of AT1R and PRR stimulate the synthesis of fibrotic genes via Wnt signaling by independent mechanisms.


Sign in / Sign up

Export Citation Format

Share Document