scholarly journals Detection of Pine Cones in Natural Environment Using Improved YOLOv4 Deep Learning Algorithm

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Ze Luo ◽  
Yizhuo Zhang ◽  
Keqi Wang ◽  
Liping Sun

Achieving the rapid and accurate detection of pine cones in the natural environment is essential for yield estimation and automatic picking. However, the complex background and tiny target pose a significant challenge to pine cone detection. This paper proposes a pine cone detection method using the improved You Only Look Once (YOLO) version 4 algorithm to overcome these challenges. First, the original pine cone image data come from a natural pine forest. Crawler technology is utilized to collect more pine cone images from the Internet to expand the data set. Second, the densely connected convolution network (DenseNet) structure is introduced in YOLOv4 to improve feature reuse and network performance. In addition, the backbone network is pruned to reduce the computational complexity and keep the output dimension unchanged. Finally, for the problem of feature fusion at different scales, an improved neck network is designed using the scale-equalizing pyramid convolution (SEPC). The experimental results show that the improved YOLOv4 model is better than the original YOLOv4 network; the average values of precision, recall, and AP reach 96.1%, 90.1%, and 95.8%; the calculation amount of the model is reduced by 21.2%; the detection speed is fast enough to meet the real-time requirements. This research could serve as a technical reference for estimating yields and automating the picking of pine cones.

Nowadays researchers are focused on processing the multi-media data for classifying the queries of end users by using search engines. The hybrid combination of a powerful classifier and deep feature extractor are used to develop a robust model, which is performed in a high dimensional space. In this research, a three different types of algorithms are combined to attain a stochastic belief space policy, where these algorithms include generative adversary modelling, maximum entropy Reinforcement Learning (RL) and belief space planning which leads to develop a multi-model classification algorithm. In the simulation framework, different adversarial behaviours are used to minimize the agent's action predictability, which has resulted the proposed method to attain robustness, while comparing with unmodelled adversarial strategies. The proposed reinforcement based Deep Learning (DL) algorithm can be used as multi-model classification purpose. The single neural network algorithm can perform the classification on text data and image data. The RL learns the appropriate belief space policy from the feature extracted information of the text and image data, the belief space policy is generated based on the maximum entropy computation


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yerong Zhong ◽  
Guoheng Ruan ◽  
Ehab Abozinadah ◽  
Jiaming Jiang

Abstract This article proposes a nameplate recognition method based on the least-squares method and deep learning algorithm character feature fusion. This method extracts the histogram of the edge direction of the character and constructs the histogram feature vector based on the wavelet transform deep learning algorithm. We use classifier training for the text recognition of the nameplate to segment the text into individual characters. Then, we extract the character features to build a template. Experiments prove that the algorithm meets the practical application needs of nameplate identification of power equipment and achieves the design goals.


Author(s):  
Usman Ahmed ◽  
Jerry Chun-Wei Lin ◽  
Gautam Srivastava

Deep learning methods have led to a state of the art medical applications, such as image classification and segmentation. The data-driven deep learning application can help stakeholders to collaborate. However, limited labelled data set limits the deep learning algorithm to generalize for one domain into another. To handle the problem, meta-learning helps to learn from a small set of data. We proposed a meta learning-based image segmentation model that combines the learning of the state-of-the-art model and then used it to achieve domain adoption and high accuracy. Also, we proposed a prepossessing algorithm to increase the usability of the segments part and remove noise from the new test image. The proposed model can achieve 0.94 precision and 0.92 recall. The ability to increase 3.3% among the state-of-the-art algorithms.


GEOMATICA ◽  
2021 ◽  
pp. 1-23
Author(s):  
Roholah Yazdan ◽  
Masood Varshosaz ◽  
Saied Pirasteh ◽  
Fabio Remondino

Automatic detection and recognition of traffic signs from images is an important topic in many applications. At first, we segmented the images using a classification algorithm to delineate the areas where the signs are more likely to be found. In this regard, shadows, objects having similar colours, and extreme illumination changes can significantly affect the segmentation results. We propose a new shape-based algorithm to improve the accuracy of the segmentation. The algorithm works by incorporating the sign geometry to filter out the wrong pixels from the classification results. We performed several tests to compare the performance of our algorithm against those obtained by popular techniques such as Support Vector Machine (SVM), K-Means, and K-Nearest Neighbours. In these tests, to overcome the unwanted illumination effects, the images are transformed into colour spaces Hue, Saturation, and Intensity, YUV, normalized red green blue, and Gaussian. Among the traditional techniques used in this study, the best results were obtained with SVM applied to the images transformed into the Gaussian colour space. The comparison results also suggested that by adding the geometric constraints proposed in this study, the quality of sign image segmentation is improved by 10%–25%. We also comparted the SVM classifier enhanced by incorporating the geometry of signs with a U-Shaped deep learning algorithm. Results suggested the performance of both techniques is very close. Perhaps the deep learning results could be improved if a more comprehensive data set is provided.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8294
Author(s):  
Chih-Ta Yen ◽  
Jia-Xian Liao ◽  
Yi-Kai Huang

This paper presents a wearable device, fitted on the waist of a participant that recognizes six activities of daily living (walking, walking upstairs, walking downstairs, sitting, standing, and laying) through a deep-learning algorithm, human activity recognition (HAR). The wearable device comprises a single-board computer (SBC) and six-axis sensors. The deep-learning algorithm employs three parallel convolutional neural networks for local feature extraction and for subsequent concatenation to establish feature fusion models of varying kernel size. By using kernels of different sizes, relevant local features of varying lengths were identified, thereby increasing the accuracy of human activity recognition. Regarding experimental data, the database of University of California, Irvine (UCI) and self-recorded data were used separately. The self-recorded data were obtained by having 21 participants wear the device on their waist and perform six common activities in the laboratory. These data were used to verify the proposed deep-learning algorithm on the performance of the wearable device. The accuracy of these six activities in the UCI dataset and in the self-recorded data were 97.49% and 96.27%, respectively. The accuracies in tenfold cross-validation were 99.56% and 97.46%, respectively. The experimental results have successfully verified the proposed convolutional neural network (CNN) architecture, which can be used in rehabilitation assessment for people unable to exercise vigorously.


2021 ◽  
Author(s):  
Tian Xiang Gao ◽  
Jia Yi Li ◽  
Yuji Watanabe ◽  
Chi Jung Hung ◽  
Akihiro Yamanaka ◽  
...  

Abstract Sleep-stage classification is essential for sleep research. Various automatic judgment programs including deep learning algorithms using artificial intelligence (AI) have been developed, but with limitations in data format compatibility, human interpretability, cost, and technical requirements. We developed a novel program called GI-SleepNet, generative adversarial network (GAN)-assisted image-based sleep staging for mice that is accurate, versatile, compact, and easy to use. In this program, electroencephalogram and electromyography data are first visualized as images and then classified into three stages (wake, NREM, and REM) by a supervised image learning algorithm. To increase the accuracy, we adopted GAN and artificially generated fake REM sleep data to equalize the number of stages. This resulted in improved accuracy, and as few as one mouse data yielded significant accuracy. Because of its image-based nature, it is easy to apply to data of different formats, of different species of animals, and even outside of sleep research. Image data can be easily understood by humans, thus especially confirmation by experts is easy when there are some anomalies of prediction. Because deep learning of images is one of the leading fields in AI, numerous algorithms are also available.


2021 ◽  
Vol 502 (3) ◽  
pp. 3200-3209
Author(s):  
Young-Soo Jo ◽  
Yeon-Ju Choi ◽  
Min-Gi Kim ◽  
Chang-Ho Woo ◽  
Kyoung-Wook Min ◽  
...  

ABSTRACT We constructed a far-ultraviolet (FUV) all-sky map based on observations from the Far Ultraviolet Imaging Spectrograph (FIMS) aboard the Korean microsatellite Science and Technology SATellite-1. For the ${\sim}20{{\ \rm per\ cent}}$ of the sky not covered by FIMS observations, predictions from a deep artificial neural network were used. Seven data sets were chosen for input parameters, including five all-sky maps of H α, E(B − V), N(H i), and two X-ray bands, with Galactic longitudes and latitudes. 70 ${{\ \rm per\ cent}}$ of the pixels of the observed FIMS data set were randomly selected for training as target parameters and the remaining 30 ${{\ \rm per\ cent}}$ were used for validation. A simple four-layer neural network architecture, which consisted of three convolution layers and a dense layer at the end, was adopted, with an individual activation function for each convolution layer; each convolution layer was followed by a dropout layer. The predicted FUV intensities exhibited good agreement with Galaxy Evolution Explorer observations made in a similar FUV wavelength band for high Galactic latitudes. As a sample application of the constructed map, a dust scattering simulation was conducted with model optical parameters and a Galactic dust model for a region that included observed and predicted pixels. Overall, FUV intensities in the observed and predicted regions were reproduced well.


CONVERTER ◽  
2021 ◽  
pp. 598-605
Author(s):  
Zhao Jianchao

Behind the rapid development of the Internet industry, Internet security has become a hidden danger. In recent years, the outstanding performance of deep learning in classification and behavior prediction based on massive data makes people begin to study how to use deep learning technology. Therefore, this paper attempts to apply deep learning to intrusion detection to learn and classify network attacks. Aiming at the nsl-kdd data set, this paper first uses the traditional classification methods and several different deep learning algorithms for learning classification. This paper deeply analyzes the correlation among data sets, algorithm characteristics and experimental classification results, and finds out the deep learning algorithm which is relatively good at. Then, a normalized coding algorithm is proposed. The experimental results show that the algorithm can improve the detection accuracy and reduce the false alarm rate.


2021 ◽  
Vol 18 (5) ◽  
pp. 172988142110396
Author(s):  
Tao Xu ◽  
Jiyong Zhou ◽  
Wentao Guo ◽  
Lei Cai ◽  
Yukun Ma

Complicated underwater environments, such as occlusion by foreign objects and dim light, causes serious loss of underwater targets feature. Furthermore, underwater ripples cause target deformation, which greatly increases the difficulty of feature extraction. Then, existing image reconstruction models cannot effectively achieve target reconstruction due to insufficient underwater target features, and there is a blurred texture in the reconstructed area. To solve the above problems, a fine reconstruction of underwater images with the target feature missing from the environment feature was proposed. Firstly, the salient features of underwater images are obtained in terms of positive and negative sample learning. Secondly, a layered environmental attention mechanism is proposed to retrieve the relevant local and global features in the context. Finally, a coarse-to-fine image reconstruction model, with gradient penalty constraints, is constructed to obtain the fine restoration results. Contrast experiment between the proposed algorithm and the existing image reconstruction methods has been done in stereo quantitative underwater image data set, real-world underwater image enhancement data set, and underwater image data set, clearly proving that the proposed one is more effective and superior.


Cataract is a dense cloudy area that forms in a lens of the eye because of which many people are going blind. More than 50% of people in old age suffer due to cataract and will not have a clear vision. In the convolutional neural network, there are many trained models which help in the classification of the object. We use transfer learning technology to train the model for the data set we have. The image feature extraction model with the inception V3 architecture trained on image net. Cataract and normal image dataset are collected. A cataract is further divided into a mature and immature cataract. The result shows whether the image is either a normal eye or cataract eye with the model accuracy being 87.5%. If in the presence of cataract, the model will identify the stage of cataract


Sign in / Sign up

Export Citation Format

Share Document