scholarly journals Experimental Study on Mechanical Properties of Gas Storage Sandstone under Water Content

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Sinan Zhu ◽  
Junchang Sun ◽  
Yingjie Wu ◽  
Baoyun Zhao ◽  
Li Zhang ◽  
...  

In order to investigate the influence of water content on the damage and degradation characteristics of Hutubi sandstone, different saturation experiments and laboratory mechanical experiments were carried out on Hutubi sandstone. The experimental results show that under uniaxial and triaxial conditions, with the increase in water content, the axial, lateral, and volume deformations gradually increase, and the deformation shows obvious dilatancy characteristics. The deviator stress and elasticity modulus of the sandstone decreased exponentially with the increasing water content. Confining pressure has a significant effect on the strength improvement of sandstone under the constant water content. Based on lognormal distribution, the damage constitutive model of sandstone which can reflect both uniaxial and triaxial condition with different water contents was proposed. The theoretical curves were compared with the experimental curves, and it was found that the theoretical curves and the experimental curves have similar changing trends. It shows the rationality of the statistical damage constitutive model.

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Yue Pan ◽  
Zhiming Zhao ◽  
Liu He ◽  
Guang Wu

In the current paper, the deformation behaviours of rocks during compression are studied by testing 10 groups of sandstone samples with different porosity characteristics. According to the energy theory, the rock material was divided into two parts: solid skeleton and voids. A statistical damage-based approach was adopted to establish a nonlinear statistical damage constitutive model. The validity of the statistical damage constitutive model is verified by the test data. The statistical damage constitutive model performs well in each stage of rock compression before failure. For different types of rocks, different confining pressures, and different water contents, the statistical damage constitutive model fits well. This model can be applied to most types of rocks and in most engineering environments.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Zhenwei Zhao ◽  
Bo Wu ◽  
Xin Yang ◽  
Zhenya Zhang ◽  
Zhantao Li

To study the impact properties of granite, the parameters (including the stress-strain curve, elasticity modulus, peak strength, and peak strain) of the test pieces in each group were determined via standard split-Hopkinson pressure bar tests. The results revealed that the prepeak stress-strain curves are approximately linear; the postpeak stress-strain curve declined sharply and exhibited the characteristics of brittle material failure after the stress exceeded the peak strength. In terms of the specimen form following failure, for increasing strain rate, the granite specimen became increasingly fragmented after failure. In addition, the single-parameter statistical damage constitutive model was improved, and a double-parameter statistical damage constitutive model for describing the total stress-strain curve of granite under the action of impact loading was proposed. The parameters of the statistical damage model, m and a, were obtained via fitting. The results revealed that the parameter m decreases with increasing elasticity modulus, whereas the parameter a increases. Similarly, the peak strength and the peak strain increased (in general) with increasing strain rate.


Irriga ◽  
2021 ◽  
Vol 26 (1) ◽  
pp. 186-194
Author(s):  
Barbara Barreto Fernandes ◽  
Indiamara Marasca ◽  
Murilo Battistuzzi Martins ◽  
Jefferson Sandi ◽  
Kleber Pereira Lanças

REGRESSÃO QUADRÁTICA PARA TEORES DE ÁGUA EM FUNÇÃO DA COMPACTAÇÃO DO SOLO     Barbara Barreto Fernandes¹; Indiamara Marasca²; Murilo³ Battistuzzi Martins; Jefferson Sandi4 e Kleber Pereira Lanças5   1 Engenheira agrônoma, Rua Luis Carlos Da Silveira, 345, Tenis Clube, 19806-370, Assis – SP, Brasil. E-mail: [email protected] 2 Engenheira agrônoma, Fazenda Cachoeira do Montividiu – 75915-000, Montividiu – GO, Brasil. E-mail: [email protected] 3 Universidade Estadual de Mato Grosso do Sul – Unidade de Cassilândia. Rodovia MS 306 - km 6,4; 79540-000, Cassilândia, MS, Brasil. E-mail:  [email protected] 4 Universidade La Salle de Lucas do Rio Verde. Av. Universitária, 1000, Parque das Emas - 78455-000, Lucas do Rio Verde, MT, Brasil. E-mail: [email protected] 5 Departamento de Engenharia Rural na FCA/UNESP, Av. Universitária, 3780 - Altos do Paraíso, 18610-034, Botucatu, SP, Brasil. E-mail: [email protected]     1 RESUMO   O trabalho teve por objetivo avaliar a influência do teor de água na avaliação de resistência mecânica a penetração do solo, medida através do índice de cone. O experimento foi realizado na UNESP/FCA, Botucatu-SP, sendo selecionadas duas classes de solo: o Nitossolo Vermelho distroférrico e o Latossolo Vermelho. Utilizou-se o delineamento inteiramente casualizado, com os seguintes tratamentos de compactação: T0 = 0; T1 = 1; T2 = 2; T3 = 3; T4=5 e T5 = 10 passadas consecutivas de um trator agrícola. Utilizou-se um penetrômetro hidráulico-eletrônico para a amostragem da resistência mecânica do solo à penetração nas camadas de: 0,00 - 0,10; 0,10 - 0,20; 0,20 - 0,30; 0,30 - 0,40 m em quatro condições de teor de água. Com o aumento do tráfego, maior foi a compactação. Porém para o solo argiloso, a partir de uma passada do trator, os valores de resistência à penetração tiveram pouco aumento, não diferindo estatisticamente para a camada mais superficial (0-0,20 m) e para a camada de 0,20-0,40 m a partir de duas passadas. Para o solo de textura média, este comportamento foi observado a partir de uma passada para a camada mais superficial (0-0,20 m) e de cinco passadas para a camada de 0,20-0,40m.   Palavras-chave: resistência do solo, umidade, agregação.     FERNANDES, B. B.; MARASCA, I.; MARTINS, M. B.; SANDI, J.; LANÇAS, K. P. QUADRACTIC REGRESSION FOR WATER CONTENTS IN THE FUNCTION OF SOIL COMPACTION     2 ABSTRACT   The objective of this work was to evaluate the influence of water content in the evaluation of mechanical resistance to soil penetration, measured through the cone index. The experiment was conducted at UNESP/FCA, Botucatu - SP, being selected two classes of soil: a Nitossolo Vermelho distroférrico and a Latosolo Vermelho. A completely randomized design was used, with the following compaction treatments: T0 = 0; T1 = 1; T2 = 2; T3 = 3; T4 = 5 and T5 = 10 consecutive passes of an agricultural tractor. A hydraulic-electronic penetrometer was used to sample the mechanical resistance of the soil to penetrate the layers; 0.00 – 0.10; 0.10 - 0.20; 0.20 - 0.30; 0.30 - 0.40 m in four water content conditions. With the increase in traffic, greater was the compression. However, for the clayey soil, from a tractor pass, the penetration resistance values ​​had a small increase, not differing statistically for the most superficial layer (0 - 0.20m) and for the 0.20 - 0.40 m layer from two passes. For medium textured soil, this behavior was observed from one pass to the most superficial layer (0 - 0.20 m) and five passes to the 0.20 - 0.40 m layer.   Keywords: soil resistance; moisture; aggregation.      


2015 ◽  
Vol 719-720 ◽  
pp. 187-192
Author(s):  
Heru Purnomo ◽  
Rahmat N.D. Syah ◽  
Mochammad R. Syaifulloh ◽  
Srikandi W. Arini ◽  
Essy Arijoeni Basoenondo ◽  
...  

The paper discusses strength-time relation of unfired soil-lime bricks in presence of different water content of soil as one of principal materials for the brick making. Two batches of soil-lime bricks were made with a mixture of lime, soil and water with a mass proportion of 1: 5.7: 1. Water contents of the first and second batch of soil are 30% and 40.581% respectively. Both batches of brick underwent compression and three point bending test. Absorption and physical change of bricks were also evaluated. Experimental investigation reveals that for both batches of bricks, up to 90 days compressive strength decreases a little but modulus of rupture rapidly decreases with time. The study shows that unfired soil-lime bricks with lower soil water content resulted in better strength performances compared to those with higher soil water content.


Author(s):  
Rafik Isaam Abdallah ◽  
Céline Perlot ◽  
Hélène Carré ◽  
Christian La Borderie ◽  
Haissam El Ghoche

This study focus on the effects of both water content and cement stabilization on the fire behavior of earth bricks. To observe the effect of cement stabilization, two materials are formulated: raw earth with only soil and water, and stabilized bricks with soil, water and cement (3.5% by mass of soil). Since the material’s mechanical strength can strongly influence its fire behavior, the raw bricks were compacted at 50 MPa to reach a compressive strength similar to the one of stabilized bricks. Four different water contents were tested; dry state obtained with oven drying and three others achieved through equalization at 50%, 75% and 100% of relative humidities. Bricks are then subjected to an ISO 834-1 standard fire. Results show that water content has caused a thermal instability behavior on the raw earth bricks after equalization at 50% and 75% relative humidities. Thermally stable bricks displayed a noticeable diffusion of cracks on their heated face. Furthermore, cement stabilization helps to prevent from thermal instabilities.


2011 ◽  
Vol 382 ◽  
pp. 172-175
Author(s):  
Ren Wei Wu ◽  
Xing Qian Peng ◽  
Li Zhang

As the "Fujian earth-building" have been inscribed by UNESCO in 2008 as World Heritage Site, attentions of protection about the "Fujian earth-building" has getting more and more. This article takes samples of a rammed-earth wall from Yongding earth-buildings and determines the shear strength of the samples with different water content through triaxial compression tests. The influence on shear strength of water content of rammed-earth samples is analyzed. Test results show that the shear strength of rammed-earth has much to do with the water content of the soil, the greater the water content is,the smaller the shear strength is. With water content increasing, cohesion and internal friction angle of rammed-earth were decreases, and its changing trend is of marked characteristic of stage. When water contents of rammed-earth is under some value, its cohesion changes in small ranges; when water contents of rammed-earth is over the value, its cohesion decreases with water content increasing.


2013 ◽  
Vol 438-439 ◽  
pp. 183-186
Author(s):  
Wei Feng Bai ◽  
Jun Hong Zhang ◽  
Jun Feng Guan ◽  
Ying Cui

Based on the statistical damage theory and the experimental phenomena, the statistical damage constitutive model for concrete under biaxial tension is proposed. The two meso-scale damage modes, rupture and yield are considered, and the whole damage evolution process is driven by the principal tensile damage strain. The results show that the proposed statistical damage model can accurately predict the constitutive behavior in the uniform damage phase for concrete under biaxial tension. The damage mechanism is discussed in the view point of biaxial strength and deformation properties.


Sign in / Sign up

Export Citation Format

Share Document