Fire Behavior of Raw Earth Bricks: Influence of Water Content and Cement Stabilization

Author(s):  
Rafik Isaam Abdallah ◽  
Céline Perlot ◽  
Hélène Carré ◽  
Christian La Borderie ◽  
Haissam El Ghoche

This study focus on the effects of both water content and cement stabilization on the fire behavior of earth bricks. To observe the effect of cement stabilization, two materials are formulated: raw earth with only soil and water, and stabilized bricks with soil, water and cement (3.5% by mass of soil). Since the material’s mechanical strength can strongly influence its fire behavior, the raw bricks were compacted at 50 MPa to reach a compressive strength similar to the one of stabilized bricks. Four different water contents were tested; dry state obtained with oven drying and three others achieved through equalization at 50%, 75% and 100% of relative humidities. Bricks are then subjected to an ISO 834-1 standard fire. Results show that water content has caused a thermal instability behavior on the raw earth bricks after equalization at 50% and 75% relative humidities. Thermally stable bricks displayed a noticeable diffusion of cracks on their heated face. Furthermore, cement stabilization helps to prevent from thermal instabilities.

Irriga ◽  
2021 ◽  
Vol 26 (1) ◽  
pp. 186-194
Author(s):  
Barbara Barreto Fernandes ◽  
Indiamara Marasca ◽  
Murilo Battistuzzi Martins ◽  
Jefferson Sandi ◽  
Kleber Pereira Lanças

REGRESSÃO QUADRÁTICA PARA TEORES DE ÁGUA EM FUNÇÃO DA COMPACTAÇÃO DO SOLO     Barbara Barreto Fernandes¹; Indiamara Marasca²; Murilo³ Battistuzzi Martins; Jefferson Sandi4 e Kleber Pereira Lanças5   1 Engenheira agrônoma, Rua Luis Carlos Da Silveira, 345, Tenis Clube, 19806-370, Assis – SP, Brasil. E-mail: [email protected] 2 Engenheira agrônoma, Fazenda Cachoeira do Montividiu – 75915-000, Montividiu – GO, Brasil. E-mail: [email protected] 3 Universidade Estadual de Mato Grosso do Sul – Unidade de Cassilândia. Rodovia MS 306 - km 6,4; 79540-000, Cassilândia, MS, Brasil. E-mail:  [email protected] 4 Universidade La Salle de Lucas do Rio Verde. Av. Universitária, 1000, Parque das Emas - 78455-000, Lucas do Rio Verde, MT, Brasil. E-mail: [email protected] 5 Departamento de Engenharia Rural na FCA/UNESP, Av. Universitária, 3780 - Altos do Paraíso, 18610-034, Botucatu, SP, Brasil. E-mail: [email protected]     1 RESUMO   O trabalho teve por objetivo avaliar a influência do teor de água na avaliação de resistência mecânica a penetração do solo, medida através do índice de cone. O experimento foi realizado na UNESP/FCA, Botucatu-SP, sendo selecionadas duas classes de solo: o Nitossolo Vermelho distroférrico e o Latossolo Vermelho. Utilizou-se o delineamento inteiramente casualizado, com os seguintes tratamentos de compactação: T0 = 0; T1 = 1; T2 = 2; T3 = 3; T4=5 e T5 = 10 passadas consecutivas de um trator agrícola. Utilizou-se um penetrômetro hidráulico-eletrônico para a amostragem da resistência mecânica do solo à penetração nas camadas de: 0,00 - 0,10; 0,10 - 0,20; 0,20 - 0,30; 0,30 - 0,40 m em quatro condições de teor de água. Com o aumento do tráfego, maior foi a compactação. Porém para o solo argiloso, a partir de uma passada do trator, os valores de resistência à penetração tiveram pouco aumento, não diferindo estatisticamente para a camada mais superficial (0-0,20 m) e para a camada de 0,20-0,40 m a partir de duas passadas. Para o solo de textura média, este comportamento foi observado a partir de uma passada para a camada mais superficial (0-0,20 m) e de cinco passadas para a camada de 0,20-0,40m.   Palavras-chave: resistência do solo, umidade, agregação.     FERNANDES, B. B.; MARASCA, I.; MARTINS, M. B.; SANDI, J.; LANÇAS, K. P. QUADRACTIC REGRESSION FOR WATER CONTENTS IN THE FUNCTION OF SOIL COMPACTION     2 ABSTRACT   The objective of this work was to evaluate the influence of water content in the evaluation of mechanical resistance to soil penetration, measured through the cone index. The experiment was conducted at UNESP/FCA, Botucatu - SP, being selected two classes of soil: a Nitossolo Vermelho distroférrico and a Latosolo Vermelho. A completely randomized design was used, with the following compaction treatments: T0 = 0; T1 = 1; T2 = 2; T3 = 3; T4 = 5 and T5 = 10 consecutive passes of an agricultural tractor. A hydraulic-electronic penetrometer was used to sample the mechanical resistance of the soil to penetrate the layers; 0.00 – 0.10; 0.10 - 0.20; 0.20 - 0.30; 0.30 - 0.40 m in four water content conditions. With the increase in traffic, greater was the compression. However, for the clayey soil, from a tractor pass, the penetration resistance values ​​had a small increase, not differing statistically for the most superficial layer (0 - 0.20m) and for the 0.20 - 0.40 m layer from two passes. For medium textured soil, this behavior was observed from one pass to the most superficial layer (0 - 0.20 m) and five passes to the 0.20 - 0.40 m layer.   Keywords: soil resistance; moisture; aggregation.      


2015 ◽  
Vol 719-720 ◽  
pp. 187-192
Author(s):  
Heru Purnomo ◽  
Rahmat N.D. Syah ◽  
Mochammad R. Syaifulloh ◽  
Srikandi W. Arini ◽  
Essy Arijoeni Basoenondo ◽  
...  

The paper discusses strength-time relation of unfired soil-lime bricks in presence of different water content of soil as one of principal materials for the brick making. Two batches of soil-lime bricks were made with a mixture of lime, soil and water with a mass proportion of 1: 5.7: 1. Water contents of the first and second batch of soil are 30% and 40.581% respectively. Both batches of brick underwent compression and three point bending test. Absorption and physical change of bricks were also evaluated. Experimental investigation reveals that for both batches of bricks, up to 90 days compressive strength decreases a little but modulus of rupture rapidly decreases with time. The study shows that unfired soil-lime bricks with lower soil water content resulted in better strength performances compared to those with higher soil water content.


2011 ◽  
Vol 382 ◽  
pp. 172-175
Author(s):  
Ren Wei Wu ◽  
Xing Qian Peng ◽  
Li Zhang

As the "Fujian earth-building" have been inscribed by UNESCO in 2008 as World Heritage Site, attentions of protection about the "Fujian earth-building" has getting more and more. This article takes samples of a rammed-earth wall from Yongding earth-buildings and determines the shear strength of the samples with different water content through triaxial compression tests. The influence on shear strength of water content of rammed-earth samples is analyzed. Test results show that the shear strength of rammed-earth has much to do with the water content of the soil, the greater the water content is,the smaller the shear strength is. With water content increasing, cohesion and internal friction angle of rammed-earth were decreases, and its changing trend is of marked characteristic of stage. When water contents of rammed-earth is under some value, its cohesion changes in small ranges; when water contents of rammed-earth is over the value, its cohesion decreases with water content increasing.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Sinan Zhu ◽  
Junchang Sun ◽  
Yingjie Wu ◽  
Baoyun Zhao ◽  
Li Zhang ◽  
...  

In order to investigate the influence of water content on the damage and degradation characteristics of Hutubi sandstone, different saturation experiments and laboratory mechanical experiments were carried out on Hutubi sandstone. The experimental results show that under uniaxial and triaxial conditions, with the increase in water content, the axial, lateral, and volume deformations gradually increase, and the deformation shows obvious dilatancy characteristics. The deviator stress and elasticity modulus of the sandstone decreased exponentially with the increasing water content. Confining pressure has a significant effect on the strength improvement of sandstone under the constant water content. Based on lognormal distribution, the damage constitutive model of sandstone which can reflect both uniaxial and triaxial condition with different water contents was proposed. The theoretical curves were compared with the experimental curves, and it was found that the theoretical curves and the experimental curves have similar changing trends. It shows the rationality of the statistical damage constitutive model.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Meichang Zhang ◽  
Rongshan Nie

The presence of water is one of the most important factors in coal mining, and it has a dual influence on the mechanical behavior of rock. To study the influence of water content on the mechanical properties of coal under complicated stress conditions, dry coal specimens and wet coal specimens with water contents of 1.8% and 3.6% were conducted by uniaxial and conventional triaxial compression tests. The relations between the uniaxial compressive strength, deformation, and water content were observed. The reductions in the strength and elastic modulus under different confining pressures were obtained. The mechanical properties of coal specimens with different water contents under triaxial compression were studied. The influences of water content on the microstructure, clay minerals, internal friction angle, and cohesive force of coal were discussed. The results show that the strengths and elastic moduli of wet specimens are clearly lower than those of dry specimens under different confining pressures. The water content has a significant influence on the postfailure mechanical behavior of coal. The loss rates of strength and elastic modulus decrease with increasing confining pressure. The water content has almost no effect on the internal friction angle, while the cohesive force of the saturated specimens is 36.5% lower than that of the dry specimens. The results can provide a reference for inhibiting the occurrence of disasters during coal mining and exploiting coal efficiently.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hongru Li ◽  
Manchao He ◽  
Rongxi Shen ◽  
Yingming Xiao ◽  
Tai Cheng

Previous studies have shown that water can reduce the acoustic emission (AE) energy and other parameters during rock failure. However, the fracture mechanism of rock can be better reflected by analyzing the AE waveform. Therefore, this paper conducted experiments of uniaxial compression on sandstone samples of various water contents and collected AE signals simultaneously. Analyses of fast Fourier transform (FFT) and Hilbert-Huang transform (HHT) were performed on the AE waveform when the sample failed. The results show that as the water content increases, the frequency and intensity of the AE signal will decrease. The influence of water on the intensity of the AE signal is greater than that on the frequency. Through the analysis of the energy mechanism of rock failure, it is pointed out that the frequency and intensity of AE signal are closely related to elastic energy index W ET and burst energy index K E . The research results have guiding significance for the monitoring of rockburst.


2008 ◽  
Vol 39-40 ◽  
pp. 489-492
Author(s):  
Miroslav Rada ◽  
Jan Vršovský

The paper deals with the effect of chemically and physically bonded water in the batch on the fining process of lead crystal containing more than 24 wt% of PbO.The influence of water contained in the batch that affects eventually the water content in the glass melt was investigated under laboratory conditions from the viewpoint of its effect on the total degree of fining, the surface tension and the glass viscosity. The role of K2O-containing raw materials characterized by different contents in chemically bonded water as well as the effect of various water contents used for physical batch wetting on above mentioned parameters are discussed by taking into account the production economy and the protection of the environment at the same time.


2019 ◽  
Vol 6 (4) ◽  
pp. 556-563 ◽  
Author(s):  
Bin Zhang ◽  
Jianting Kang ◽  
Tianhe Kang ◽  
Guanxian Kang ◽  
Guofei Zhao

Abstract Understanding the interaction of CH4 with kaolinite is significant for researchers in the fields of coalbed CH4 and shale gas. The diffusion behaviors of CH4 in kaolinite with water contents ranging from 0 to 5 wt% have been analyzed by molecular dynamics simulations. The results of the simulations indicate that CH4 molecules can jump between adjacent holes in the kaolinite matrix. CH4 diffusion coefficient was very low (3.28 × 10−9 m2/s) and increased linearly with the increasing of water content. As the water content decreased, the value of radial distribution function first peak between CH4 and oxygen was larger, meaning that with lower water content, the interaction energy between CH4 and oxygen in kaolinite is stronger. The interaction between CH4 and water is linearly positively correlated with water content, in contrast, the interaction energy between kaolinite and water as well as between kaolinite and CH4 decreased linearly with increasing water content. On the other hand, the diffusion of CH4 molecules adsorbed on the surfaces also can be accelerated by the fast diffusion of water molecules in the middle micropore of the kaolinite.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3103
Author(s):  
Tianjun Zhang ◽  
Zhiqiang Ling ◽  
Mingkun Pang ◽  
Yukai Meng

Water content is an important factor in the deformation-destruction process of coal bodies. To analyze the influence of water on the creep acoustic emission (AE) characteristics of coal rock surrounding a borehole, we conducted graded loading creep AE tests of single-hole specimens with different water contents (0%, 4%, 8% and water-saturation) under uniaxial loading. The findings include the following: the water content affects the creep mechanical properties of the coal body around a borehole. The creep transient strain and steady-state strain increased exponentially with rising water content; the saturated specimen showed the highest increase, reaching 44.5% and 28.6%, respectively. The specimen water content affected the cumulative ringing count (CRC) and the axial strain during creep. The axial strain increased with rising water content, the CRC increased linearly with rising axial strain. The higher the water content, the greater the CRC rise. At different stress levels, the CRC in the 4%, 8% and saturated water content specimens changed by 43%, 53% and 74%, respectively. The AE ringing rate showed a pattern of grow–decline–stabilize at each creep stage. The AEs decreased significantly with the rising water content and the creep curve lagged behind the AE data. This paper provides guidelines for gas extraction, borehole maintenance and AE detection.


Sign in / Sign up

Export Citation Format

Share Document