scholarly journals Research on Radiosensitivity of the Protein Kinase B Signaling Pathway in Cervical Cancer

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Yingping Zhu ◽  
Leilai Xu ◽  
Weirong Ma ◽  
Zeliang Chen

The main characteristics of cervical cancer are abnormal and uncontrolled cell proliferation, and it regulates cell growth, differentiation, and cell death through genetic and epigenetic changes. This paper mainly discusses the radiosensitivity of the cervical cancer protein kinase B signaling pathway and discusses the specific mechanisms that affect the occurrence and development of cervical cancer. In addition, this paper studies the effect of transient transfection knocking down the expression of TRIP4 in cervical cancer cells on the expression of key proteins in related signaling pathways and explores the mechanism of its specific effects and finds the mechanism of TRIP4’s effect on cervical cancer radiosensitivity. The findings of this study show for the first time that knocking down TRIP4 inhibits cell viability by inhibiting the P13K/AKT and MAPK/ERK pathways, and this corresponds to the first part of the experimental results, which show that knocking down TRIP4 inhibits colony formation and increases apoptosis in HeLa and SiHa cells. Moreover, simultaneous inhibition of TRIP4 and hTERT proteins can increase the radiosensitivity of cervical cancer cells. These findings indicate that the inhibition of TRIP4 may be a new type of treatment that selectively targets the P13K/AKT and MAPK/ERK pathways and hTERT pathways in cervical cancer cells and provides a therapeutic option for the treatment of cervical cancer.

2019 ◽  
Vol 215 (4) ◽  
pp. 632-638 ◽  
Author(s):  
Yali Chen ◽  
Ling Han ◽  
Liping Bai ◽  
Huiyun Tang ◽  
Ai Zheng

2020 ◽  
Vol 10 ◽  
Author(s):  
Nan Cui ◽  
Lu Li ◽  
Qian Feng ◽  
Hong-mei Ma ◽  
Dan Lei ◽  
...  

Hexokinase 2 (HK2) is a member of the hexokinases (HK) that has been reported to be a key regulator during glucose metabolism linked to malignant growth in many types of cancers. In this study, stimulation of HK2 expression was observed in squamous cervical cancer (SCC) tissues, and HK2 expression promoted the proliferation of cervical cancer cells in vitro and tumor formation in vivo by accelerating cell cycle progression, upregulating cyclin A1, and downregulating p27 expression. Moreover, transcriptome sequencing analysis revealed that MAPK3 (ERK1) was upregulated in HK2-overexpressing HeLa cells. Further experiments found that the protein levels of p-Raf, p-MEK1/2, ERK1/2, and p-ERK1/2 were increased in HK2 over-expressing SiHa and HeLa cells. When ERK1/2 and p-ERK1/2 expression was blocked by an inhibitor (FR180204), reduced cyclin A1 expression was observed in HK2 over-expressing cells, with induced p27 expression and inhibited cell growth. Therefore, our data demonstrated that HK2 promoted the proliferation of cervical cancer cells by upregulating cyclin A1 and down-regulating p27 expression through the Raf/MEK/ERK signaling pathway.


2020 ◽  
Vol 470 ◽  
pp. 64-74 ◽  
Author(s):  
Vivek K. Kashyap ◽  
Nirnoy Dan ◽  
Neeraj Chauhan ◽  
Qinghui Wang ◽  
Saini Setua ◽  
...  

Author(s):  
Junliang Guo ◽  
Tian Tang ◽  
Jinhong Li ◽  
Yihong Yang ◽  
Yi Quan ◽  
...  

The aim of current study was to explore the mechanism of miR-142-5p in cervical cancer through mediating the PIK3AP1/P13K/AKT axis. To this end, RT-qPCR and Western blot analysis results revealed that miR-142-5p was poorly expressed, whereas PIK3AP1 was highly expressed in cervical cancer tissues and cells. Furthermore, miR-142-5p was hypermethylated in cervical cancer, as reflected by MS-PCR and ChIP assessment of enrichment of DNMT1/DNMT3a/DNMT3b in the promoter region of miR-142-5p. A target binding relationship between miR-142-5p and PIK3AP1 was established, showing that miR-142-5p targeted and inhibited the expression of PIK3AP1. Loss- and gain- function assays were conducted to determine the roles of miR-142-5p and PIK3AP1 in cervical cancer cells. CCK-8, flow cytometry and Transwell assay results revealed that overexpression of miR-142-5p in cervical cancer cells downregulated PIK3AP1 and inhibited the P13K/AKT signaling pathway, leading to reduced proliferation, migration, and invasion capacity of cervical cancer cells, but enhanced apoptosis. Collectively, epigenetic regulation of miR-142-5p targeted PIK3AP1 to inactivate the P13K/AKT signaling pathway, thus suppressing development of cervical cancer, which presents new targets for the treatment of cervical cancer.


2019 ◽  
Vol 2019 ◽  
pp. 1-26
Author(s):  
Liubing Hu ◽  
Yan Wang ◽  
Zui Chen ◽  
Liangshun Fu ◽  
Sheng Wang ◽  
...  

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent cancer cell apoptosis-inducing factor that can induce apoptosis in a variety of cancer cells. However, resistance to TRAIL in cancer cells is a huge obstacle in creating effective TRAIL-targeted clinical therapies. Thus, agents that can either enhance the effect of TRAIL or overcome its resistance are needed. In this study, we combined TRAIL with SNX-2112, an Hsp90 inhibitor we previously developed, to explore the effect and mechanism that SNX-2112 enhanced TRAIL-induced apoptosis in cervical cancer cells. Our results showed that SNX-2112 markedly enhanced TRAIL-induced cytotoxicity in HeLa cells, and this combination was found to be synergistic. Additionally, we found that SNX-2112 sensitized TRAIL-mediated apoptosis caspase-dependently in TRAIL-resistant HeLa cells. Mechanismly, SNX-2112 downregulated antiapoptosis proteins, including Bcl-2, Bcl-XL, and FLIP, promoted the accumulation of reactive oxygen species (ROS), and increased the expression levels of p-JNK and p53. ROS scavenger NAC rescued SNX-2112/TRAIL-induced apoptosis and suppressed SNX-2112-induced p-JNK and p53. Moreover, SNX-2112 induced the upregulation of death-receptor DR5 in HeLa cells. The silencing of DR5 by siRNA significantly decreased cell apoptosis by the combined effect of SNX-2112 and TRAIL. In addition, SNX-2112 inhibited the Akt/mTOR signaling pathway and induced autophagy in HeLa cells. The blockage of autophagy by bafilomycin A1 or Atg7 siRNA abolished SNX-2112-induced upregulation of DR5. Meanwhile, ROS scavenger NAC, JNK inhibitor SP600125, and p53 inhibitor PFTα were used to verify that autophagy-mediated upregulation of DR5 was regulated by the SNX-2112-stimulated activation of the ROS-JNK-p53 signaling pathway. Thus, the combination of SNX-2112 and TRAIL may provide a novel strategy for the treatment of human cervical cancer by overcoming cellular mechanisms of apoptosis resistance.


Sign in / Sign up

Export Citation Format

Share Document